122 research outputs found

    Nitrogen, phosphorus, potassium, calcium and magnesium releasefrom two compressed fertilizers: column experiments

    Get PDF
    The objective of this work was to study nutrients release from two compressed nitrogen–potassium–phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0–20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11–18–11 or 8–8–16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8–8–16 than from the 11–18–11 fertilizer. In view of that, the 8–8–16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg−1.S

    SARS-CoV-2 and other main pathogenic microorganisms in the environment: situation in Galicia and Spain

    Get PDF
    In the context of the current COVID-19 pandemic, and mostly taking a broad perspective, it is clearly relevant to study environmental factors that could affect eventual future outbreaks due to coronaviruses and/or other pathogenic microorganisms. In view of that, the authors of this manuscript review the situation of SARS-CoV-2 and other main pathogenic microorganisms in the environment, focusing on Galicia and Spain. Overall, in addition to showing local data, it is put in evidence that, summed to all efforts being carried out to treat/control this and any other eventual future epidemic diseases, both at local and global levels, a deep attention should be paid to ecological/environmental aspects that have effects on the planet, its ecosystems and their relations/associations with the probability of spreading of eventual future pandemics.Agencia Estatal de Investigación | Ref. RTI2018-099574-B-C21Agencia Estatal de Investigación | Ref. RTI2018-099574-B-C2

    Knowledge modelling for the motion detection task

    Get PDF
    In this article knowledge modelling at the knowledge level for the task of moving objects detection in image sequences is introduced. Three items have been the focus of the approach: (1) the convenience of knowledge modelling of tasks and methods in terms of a library of reusable components and in advance to the phase of operationalization of the primitive inferences; (2) the potential utility of looking for inspiration in biology; (3) the convenience of using these biologically inspired problem-solving methods (PSMs) to solve motion detection tasks. After studying a summary of the methods used to solve the motion detection task, the moving targets in indefinite sequences of images detection task is approached by means of the algorithmic lateral inhibition (ALI) PSM. The task is decomposed in four subtasks: (a) thresholded segmentation; (b) motion detection; (c) silhouettes parts obtaining; and (d) moving objects silhouettes fusion. For each one of these subtasks, first, the inferential scheme is obtained and then each one of the inferences is operationalized. Finally, some experimental results are presented along with comments on the potential value of our approach

    Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils

    Get PDF
    The increase of bacterial community tolerance to Cu, and of cotolerance to the antibiotics tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), was studied in three soils spiked with six different Cu concentrations (resulting in 0, 125, 250, 500, 750 and 1000 mg kg−1 into soils) in a laboratory experiment, after 42 days of incubation. The results show significant increases of bacterial community tolerance to the metal when soil Cu concentrations were between 125 and 500 mg kg−1. Moreover, Cu soil pollution also caused cotolerance to the three antibiotics studied but for higher Cu concentrations (1000 mg kg−1)his study has been funded by Xunta de Galicia (Consellería de Economía, Emprego e Industria) through the project ED431F 2018/06 and by the Spanish Ministry of Economy and Competitiveness through the projects CGL2015-67333-C2-1-R and -2-R (FEDER Funds). Research group was also funded by Xunta de Galicia via CITACA Strategic Partnership (ED431E 2018/07) and BV1 research group (ED431C 2017/62-GRC). David Fernández Calviño holds a Ramón y Cajal contract (RYC-2016-20411), financed by the Spanish Ministry of Economy, Industry and Competitiveness. Vanesa Santás Miguel holds a predoctoral fellowship founded by the University of VigoS

    Low-cost materials to face soil and water pollution

    Get PDF
    In this mini-review, the authors comment on selected papers focused on the use of low-cost materials to prevent/remediate environmental pollution (specifically, soil and water pollution). The authors have selected publications corresponding to the years 2021 and 2022, using the searching tools Scopus, Web of Sciences, and Google Scholar to find basic data about the papers, the countries where the researches were carried out, number of citations, and other details indicative of the relevance of the works. Overall, the field of research is receiving growing attention and efforts, providing useful data on classical and new low-cost materials, both raw and modified by means of low-cost procedures, which constitute a clearly interesting alternative to face environmental pollution currently and for the futureS

    Influence of pH on the adsorption-desorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine in soils with variable surface charge

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGIn this research, the adsorption/desorption of the antibiotics doxycycline (DC), enrofloxacin (ENR), and sulfamethoxypyradazine (SMP) was studied in 6 agricultural soils with predominance of variable charge, both before and after removing organic matter by calcination. DC adsorption was high at acidic pH, and decreased at pH values above 8. Removal of organic matter with calcination caused just a slight decrease in adsorption, and even in some soils adsorption was similar to that in non-calcined samples. The adsorption coefficients (Kd) were higher for the DC− species compared to DC+, DC0 and DC2−. Regarding DC desorption, the values were very low throughout the pH range covered in the study (2–12), both in the calcined samples and in those not subjected to calcination. ENR showed a similar behavior to DC regarding the effect of pH, since ENR adsorption also decreased at basic pH, but the effect of removing organic matter was different, as it caused a clear decrease in ENR adsorption. The species with the highest Kd was in this case ENR0, although ENR+ is also quantitatively important as regards Kd value in calcined samples. For this antibiotic, no differences in desorption were observed between calcined and non-calcined samples. Finally, SMP adsorption also decreased as pH increased, and, in addition, similarly to what happened with ENR, in general, there was a strong decrease in SMP adsorption when organic matter was removed. The species with the highest Kd in this case was SMP+ in non-calcined samples, but SMP0 and SMP− become more relevant in calcined samples. The percentages of SMP desorption were higher than those for the other two antibiotics, and an increase occurs at intermediate pH values, being higher for calcined samples. These results can be considered relevant in terms of increasing the knowledge as regards the possible evolution and fate of the three antibiotics studied. Specifically, for different pH conditions and with different organic matter contents, when they reach soils and other environmental compartments after being discharged as contaminants. This could have important repercussions on public health and the overall environmentMinisterio de Economía y Competitividad | Ref. CGL2015-67333-C2-1-RMinisterio de Economía y Competitividad | Ref. CGL2015-67333-C2-2-

    Photodegradation of ciprofloxacin, clarithromycin and trimethoprim: influence of pH and humic acids

    Get PDF
    In view of the rising relevance of emerging pollutants in the environment, this work studies the photodegradation of three antibiotics, evaluating the effects of the pH of the medium and the concentration of dissolved organic matter. Simulated light (with a spectrum similar to that of natural sunlight) was applied to the antibiotics Ciprofloxacin (Cip), Clarithromycin (Cla) and Trimethoprim (Tri), at three different pH, and in the presence of different concentrations of humic acids. The sensitivity to light followed the sequence: Cip > Cla > Tri, which was inverse for the half-life (Tri > Cla > Cip). As the pH increased, the half-life generally decreased, except for Cla. Regarding the kinetic constant k, in the case of Cip and Tri it increased with the rise of pH, while decreased for Cla. The results corresponding to total organic carbon (TOC) indicate that the complete mineralization of the antibiotics was not achieved. The effect of humic acids was not marked, slightly increasing the degradation of Cip, and slightly decreasing it for Tri, while no effect was detected for Cla. These results may be relevant in terms of understanding the evolution of these antibiotics, especially when they reach different environmental compartments and receive sunlight radiation.Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-099574-B-C21Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-099574-B-C2

    As(V) sorption/desorption on different waste materials and soil samples

    Get PDF
    Aiming to investigate the efficacy of different materials as bio-sorbents for the purification of As-polluted waters, batch-type experiments were employed to study As(V) sorption and desorption on oak ash, pine bark, hemp waste, mussel shell, pyritic material, and soil samples, as a function of the As(V) concentration added. Pyritic material and oak ash showed high sorption (90% and >87%) and low desorption (<2% and <7%). Alternatively, hemp waste showed low retention (16% sorption and 100% desorption of the amount previously sorbed), fine shell and pine bark sorbed <3% and desorbed 100%, the vineyard soil sample sorbed 8% and released 85%, and the forest soil sample sorbed 32% and desorbed 38%. Sorption data fitted well to the Langmuir and Freundlich models in the case of both soil samples and the pyritic material, but only to the Freundlich equation in the case of the various by-products. These results indicate that the pyritic material and oak ash can be considered efficient As(V) sorbents (thus, useful in remediation of contaminated sites and removal of that pollutant), even when As(V) concentrations up to 6 mmol L-1 are added, while the other materials that were tested cannot retain or remove As(V) from polluted media.Ministerio de Economía y Competitividad | Ref. CGL2012-36805-C02-01Ministerio de Economía y Competitividad | Ref. CGL2012-36805-C02-0

    Efficacy of different waste and by-products from forest and food industries in the removal/retention of the antibiotic cefuroxime

    Get PDF
    Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX.Agencia Estatal de Investigación | Ref. RTI2018-099574-B-C21Agencia Estatal de Investigación | Ref. RTI2018-099574-B-C2

    Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: pine bark, “oak ash” and mussel shell

    Get PDF
    This work focuses on studying the efficacy of three different by-products to adsorb three antibiotics (sulfadiazine, SDZ; sulfamethazine, SMT; sulfachloropyridazine, SCP). These antibiotics can be considered pollutants of the environment when they reach water, as well as in cases where they are spread on soils through irrigation or contained in sewage sludge or livestock manure. In this study, batch-type adsorption/desorption experiments were performed for each of the three sulfonamides, adding 7 different concentrations of the antibiotics, going from 1 to 50 μmol L−1, and with contact time of 24 h. The results indicate that pine bark is the most efficient bioadsorbent among those studied, as it adsorbs up to 95% of the antibiotics added, while desorption is always less than 11%. However, for “oak ash” and mussel shell the adsorption is always lower than 45 and 15%, respectively, and desorption is high, reaching up to 49% from “oak ash” and up to 81% from mussel shell. Adsorption data showed good fitting to the Linear and Freundlich models, with R2 values between 0.98 and 1.00 in both cases. Kd and KF adsorption parameters showed similar values for the same sorbent materials but were much higher for pine bark than for the other two bioadsorbents. The Freundlich's n parameter showed values in the range 0.81–1.28. The highest KF values (and therefore the highest adsorption capacities) were obtained for the antibiotic SCP in pine bark. Pine bark showed the highest capacity to adsorb each of the antibiotics, increasing as a function of the concentration added. When the concentration of sulfonamide added was 50 μM, the amounts adsorbed were 780 μmol kg−1 for SDZ, 890 μmol kg−1 for SMT, and 870 μmol kg−1 for SCP. “Oak ash” and mussel shell have low adsorption capacity for all three sulfonamides, showing values always lower than 150 μmol kg−1 (oak ash) and 20 μmol kg−1 (mussel shell) when a concentration of 50 μmol L−1 of antibiotic is added. The results of this study could aid to make an appropriate management of the by-products studied, in order to facilitate their valorization and recycling in the treatment of environmental compartments polluted with sulfonamide antibioticsThis work was supported by the Spanish Ministry of science, innovation and universities [grant numbers RTI2018-099574-B-C21 and RTI2018-099574-B-C22]. It also received funds from the European Regional Development Fund (ERDF) (FEDER in Spain), being a complement to the previous grants, without additional grant number. M. Conde-Cid holds a pre-doctoral contract (FPU15/0280, Spanish Government). The research of Dr. Gustavo F. Coelho was also supported by the Improving Coordination of Senior Staff (CAPES), Post-Doctoral Program Abroad (PDE) Process number {88881.172297/2018-01} of the Brazilian Government. The sponsors had not involvement in study design; in the collection, analyses and interpretation of data; in the writing of the report, and in the decision to submit the article for publicationS
    corecore