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Abstract. The objective of this work was to study nu-

trients release from two compressed nitrogen–potassium–

phosphorous (NPK) fertilizers. In the Lourizán Forest Cen-

ter, tablet-type controlled-release fertilizers (CRF) were pre-

pared by compressing various mixtures of fertilizers with-

out covers or binders. We used soil columns (50 cm long

and 7.3 cm inner diameter) that were filled with soil from

the surface layer (0–20 cm) of an A horizon corresponding to

a Cambic Umbrisol. Tablets of two slow-release NPK fertil-

izers (11–18–11 or 8–8–16) were placed into the soil (within

the first 3 cm), and then water was percolated through the

columns in a saturated regime for 80 days. Percolates were

analyzed for N, P, K+, Ca2+ and Mg2+. These elements were

also determined in soil and fertilizer tablets at the end of the

trials. Nutrient concentrations were high in the first leachates

and reached a steady state when 1426 mm of water had been

percolated, which is equivalent to approximately 1.5 years

of rainfall in this geographic area. In the whole trial, both

tablets lost more than 80 % of their initial N, P and K con-

tents. However, K+, Ca2+ and Mg2+ were the most leached,

whereas N and P were lost in leachates to a lesser extent.

Nutrient release was slower from the tablet with a compo-

sition of 8–8–16 than from the 11–18–11 fertilizer. In view

of that, the 8–8–16 tablet can be considered more adequate

for crops with a nutrient demand sustained over time. At the

end of the trial, the effects of these fertilizers on soil chemi-

cal parameters were still evident, with a significant increase

of pH, available Ca2+, Mg2+, K+, P and effective cation ex-

change capacity (eCEC) in the fertilized columns, as well as

a significant decrease in exchangeable Al3+, reaching values

< 0.08 cmol (+) kg−1.

1 Introduction

Conventional fertilizers supply plants quickly with nutrients,

giving rise immediately to high nutrient availability. In some

cases, this rapid contribution may be excessive, and nutrient

excess, as well as nutrient deficiency, can have deleterious ef-

fects on plant growth. Moreover, nutrient excess may cause

them to be transferred to surface and ground water, result-

ing in environmental problems (Khan et al., 2014). There-

fore, a sound management of fertilization should reconcile

the maintenance of high crop yields with reduced costs, re-

source economy and environmental issues.

Controlled-release fertilizers (CRF) may represent a solu-

tion to these problems. The behavior of CRF is close to that

of an ideal fertilizer, since theoretically the release of nu-

trients takes place in the moment and the amount required

by plants (Oertli, 1980; Jiménez-Gómez, 1992). Jiménez-

Gómez (1992) and Shaviv (2001) classified CRF according

to the mechanism of delaying nutrient transfer to the sub-

strate: materials coated by polymers or resins, low-solubility

organic substances (urea-formaldehyde, isobutylen diurea)

or nutrients in a carrier matrix (waxes, peat, vermiculite,

lignin, etc.). Most trials conducted to test the effectiveness

of these fertilizers concluded that the amount of nutrients

required is significantly reduced compared to conventional

fertilizers, highlighting the energy savings and the improved

use of N, minimizing its losses (Shoji and Kanno, 1994; Sha-

viv, 2001, 2001; Hangs et al., 2003; Chen et al., 2008; Sato

and Morgan, 2008; Entry and Sojka, 2008; Hyatt et al., 2010;

Wilson et al., 2010). Another reason for recommending the

use of CRF is to prevent the emission of N2O from N fer-

tilization practices, due to its role in climate change (Cheng

et al., 2006; Jingyan et al., 2010). However, the effectiveness
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Table 1. Chemical characteristics of the soil used in this study (average of three replicates, with standard deviation in parentheses).

pH C N−NO−
3

N−NH+
4

P K Ca Mg Al eCEC

4.13 19.20 45.51 187.11 8.96 0.24 0.11 0.13 0.92 1.40

(0.04) (2.30) (1.60) (7.90) (0.80) (0.06) (0.04) (0.03) (0.13) (0.11)

C: total C (g kg−1); N−NO−
3

and N−NH+
4

(mg kg−1); P: available P (mg kg−1); K, Ca, Mg, Al: exchangeable cations

(cmol (+) kg−1); eCEC: effective cation exchange capacity (cmol (+) kg−1).

Table 2. Initial tablet weights (g) and N, P, K, Mg and Ca amounts

(g) applied to each column with the treatments (average of three

replicates, with standard deviation in parentheses).

Treatment Initial N P K Mg Ca

weight

11–18–11 30.83 5.29 2.68 2.50 0.29 1.79

(0.18) (0.20) (0.15) (0.12) (0.01) (0.27)

8–8–16 38.03 5.04 1.74 4.49 2.89 1.27

(0.27) (0.40) (0.06) (0.04) (0.09) (0.09)

of this type of fertilizer has not been extensively tested under

a range of environmental conditions that may occur due to

climatic variation and soil water content.

In Galicia (NW Spain), some studies were conducted in

forest plots using tablet-type controlled-release fertilizers,

produced in the Lourizán Forest Center (Pontevedra) by com-

pressing various mixtures of fertilizers without covers or

binders. They were nitrogen–potassium–phosphorous (NPK)

fertilizers (11–18–11 and 8–8–16) formulated to promote

growth of forest trees. The results indicated that, compared

to conventional fertilizers, these CRF increased the height,

diameter and survival rate of Eucaliptus globulus and Pinus

pinaster, whereas no significant differences were observed

in P. radiata (Bará and Morales, 1977). However, these stud-

ies are limited and focused on the effects on forest produc-

tion, thus needing further research to test the behavior of such

CRF and to investigate the dynamics of each nutrient release.

The objectives of this work are (1) to study the dynam-

ics of nutrient release by two different controlled-release fer-

tilizers prepared by compression, without covers or binders,

assessing the rate of release of the tablets and the losses suf-

fered by leaching, and (2) to study the impact on the chemical

characteristics of an acid forest soil and the drainage waters

generated. For that purpose a laboratory experiment was con-

ducted under controlled conditions using soil columns.

2 Materials and methods

2.1 Soil used

The experiment was conducted on an acid sandy loam

soil developed over granite, collected in an abandoned

field with typical vegetation of scrub (Ulex spp., Erica

spp., Cytisus spp.). This soil has low pH (4.13), avail-

able P (8.9 mg kg−1) and effective cation exchange capac-

ity (eCEC) (1.4 cmol (+) kg−1), and is classified as Cam-

bic Umbrisol (humic) (IUSS-WRB, 2007). Table 1 shows

its main chemical characteristics. The surface soil layer (0–

20 cm) was collected after removing the vegetation and the

litter. The soil was oven-dried at 40 ◦C and sieved through

a 5 mm mesh prior to introduction in laboratory columns

(50 cm long and 7.3 cm inner diameter).

2.2 Fertilizer tablets

One NPK compressed tablet, having an 11–18–11 or 8–8–16

composition (which are appropriate formulations for forest

fertilization), was placed in each soil column. Calcium phos-

phate, potassium sulfate, N as amide, and urea-formaldehyde

and magnesite (magnesium carbonate) were used in the man-

ufacture of the tablets. The size of these tablets was 3.3 mm in

diameter and 33.0 mm in thickness. Table 2 shows the weight

and nutrient contents of the fertilizer tablets.

2.3 Laboratory columns

The experimental design consisted of three replicates per

treatment, including controls. The experimental device was

described by Núñez-Delgado et al. (1997) and has been used

in previous studies (Núñez-Delgado et al., 2002; Pousada-

Ferradás et al., 2012). A soil sample (900 g) was introduced

in each column, tapping the column to facilitate the settle-

ment of the particles and to achieve a bulk density similar

to that of natural soil. Finally, the effective soil depth was

20 cm, and bulk density was 1.075 g cm−3. The experiment

was conducted under saturation conditions, in order to avoid

variability in moisture content and at the same time ensuring

water-saturation conditions, and thus ruling out the influence

of redox processes. This procedure was carried out in previ-

ous soil column studies (Núñez-Delgado et al., 1997, 2002;

Pousada-Ferradás et al., 2012), always bearing in mind that

the results of this kind of experiment cannot be extrapolated

to aerated conditions.

After filling the columns, the soils were saturated with dis-

tilled water from the bottom by capillarity, to facilitate the re-

moval of pore air and to guarantee wetting. When the wetting

was completed, the soils were weighed to determine the wa-

ter content at saturation. Then, distilled water started to flow

continuously through the columns from the top, by gravity,
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Figure 1. Acidity (pH) of leachates from fertilized and control columns as a function of the 3 

volume of percolated water (average of three replicates). 4 

5 

Figure 1. Acidity (pH) of leachates from fertilized and control

columns as a function of the volume of percolated water (average

of three replicates).

using the constant level device and the complementary appa-

ratus described in Núñez-Delgado et al. (1997). The flow rate

and the pH and electrical conductivity (EC) of the leachates

were measured in each sample for 18 days. By this time, the

EC was stabilized at around 9 µS cm−1, and one fertilizer

tablet was placed in each column (except for controls) and

introduced in the upper part of the soil (within the first 3 cm).

The water flow was resumed and, on average, six leachate

samples were collected daily from each column for 15 days,

preserving it at 4 ◦C. We selected six samples/day based in

previous trials, in view of the variability of some parameters

that were evaluated and in the final volume reached. Each of

the six samples were equivalent to 0.117 L in volume. The pH

and EC were measured in freshly collected samples; when

values for these parameters were very similar in successive

samples, the sampling frequency was reduced to once a day.

At the end of the columns experiment, the flow of distilled

water was stopped, the samples corresponding to each day

were mixed and homogenized and an aliquot was reserved

for analysis. The whole period of water flow was 80 days

and the total water flow was 56.15 L. At the end of the ex-

periment, the remainder of each tablet was collected and an-

alyzed.

2.4 Chemical analysis

The following determinations were performed in leachates:

pH and EC (potentiometric methods), concentrations of

NH+4 and NO−3 (by steam distillation, after adding MgO

and Devarda’s alloy) (Bremmer, 1965), P (by visible spec-

trophotometry; Olsen and Sommers, 1982), Ca2+, Mg2+

and K+ (by atomic absorption or emission spectrometry,

PerkinElmer AAnalyst 200).

Soil samples before and at the end of the experiment

were subjected to the following determinations: pH in wa-
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Figure 2. EC of leachates from fertilized and control columns as a function of the volume of 3 

percolated water (average of three replicates). 4 

5 

Figure 2. EC of leachates from fertilized and control columns as a

function of the volume of percolated water (average of three repli-

cates).

ter (soil : water ratio 1 : 10), total carbon and nitrogen (us-

ing a LECO 2000 auto analyzer), exchangeable Ca2+, Mg2+,

Na+, K+, Al3+ (extracted by 1M NH4Cl – Peech et al., 1947

– and measured by a PerkinElmer AAnalyst 200 atomic ab-

sorption spectrometer) and available phosphorus (Olsen and

Sommers, 1982). The effective cation exchange capacity was

calculated as the sum of Ca2+, Mg2+, Na+, K+ and Al3+, ex-

tracted by 1 M NH4Cl. NO−3 and NH+4 were extracted by 2 M

KCl (Keeney and Nelson, 1982) and determined by steam

distillation (Bremmer, 1965).

2.5 Statistical analysis

Data were statistically treated by means of SPSS 19.0 for

Windows (IBM Corp. Armonk, NY, 2010). Analysis of vari-

ance was performed, determining the least significant differ-

ences, and using Kolmogorov–Smirnov to tests for normal-

ity.

3 Results and discussion

3.1 Chemical characteristics of leachates

3.1.1 pH

At the beginning of the experiment, all leachates from fer-

tilized columns had pH values significantly lower than the

controls (p < 0.001) (Fig. 1). After the percolation of the

first 5.97 L, leachates from fertilized columns experienced a

rapid pH increase. The pH value of leachates from treatment

8–8–16 exceeded that of the control when 4.67 L of perco-

lated water (equivalent to 1116 L m−2) had been collected. In

this treatment (8–8–16), pH values ranged between 3.90 and

6.60. On the contrary, leachates from treatment 11–18–11

had pH levels significantly lower than that of the controls un-

til the last sampling date, when both pH values were similar.

www.solid-earth.net/5/1351/2014/ Solid Earth, 5, 1351–1360, 2014



1354 M. J. Fernández-Sanjurjo et al.: Nitrogen, phosphorus, potassium, calcium and magnesium release

The initial acidity of leachates from fertilized columns can

be attributed to the displacement of acidic exchange cations

from soil by cations released by fertilizers (Núñez-Delgado

et al., 1997, 2002).

3.1.2 Electrical conductivity

Figure 2 shows the time-course evolution of EC in the

leachates. Regarding the 8–8–16 treatment, EC reached a

value near 8 mS cm−1 after percolating 0.24 L, then rapidly

decreasing, reaching values < 4 mS cm−1 (threshold for

saline soils) when 0.48 L were percolated and finally dropped

to 0.034 mS cm−1 at the end of the experiment. With regard

to the 11–18–11 treatment, EC values were below 4 mS cm−1

from 0.24 L percolation, then progressively decreasing to

0.042, at the end. Control columns showed an initial EC

value of 0.021, being 0.003 mS cm−1 at the end of the ex-

periment.

3.1.3 Ammonium, Nitrate and Phosphorus

High amounts of ammonium were leached from fertilized

columns in the first 5 days of water flow, after the percolation

of 5.97 L (Fig. 3), representing around 70 % of the total am-

monium leachate at the end of the experiment in both tablets.

Although most NH+4 was leached during the first days, this

loss corresponded to a high volume of percolated water, con-

cretely the amount of water collected during the first 5 days

of flow (5.97 L) is equivalent to 1.5 years of rainfall in the

area (1426 L m−2). It must be kept in mind that percolation

takes place in a saturation regime, so that the prevalence of

this reduced form of nitrogen is favored. Another factor that

may influence the forms of N that are leached is the type of

surface charge of soil colloids. Xiong et al. (2010), in an ex-

periment with soil columns, found greater leaching of NH+4
than of NO−3 in soils with variable charge, contrary to the

results obtained in soils with permanent charge. The soils in

our study have mineral composition similar to that of Xiong

et al. (2010) (hydroxy-Al interlayered vermiculites, kaolin-

ites; data not shown) and high organic matter content, there-

fore with variable charge also prevailing. These results can

be due to the presence of positive surface charge on some

variable-charge compounds when pH value is acid or sub-

acid, then making it difficult for the cations to be adsorbed

into the soil, whereas dominate negative charges in soils hav-

ing a permanent charge are an advantage to cations being

retained. Other studies with fertilized soil columns (Núñez-

Delgado et al., 2002) also indicate high leaching of NH+4 .

After this initial period, ammonium concentrations were sim-

ilar in leachates from fertilized and unfertilized columns. The

accumulated ammonium loss showed similar trends in both

fertilized treatments, but surprisingly it was higher in treat-

ment 8–8–16 than in 11–18–11 (Fig. 3).

The nitrate concentration in leachates from fertilized

columns was high in the first day of flow (1.44 L), but de-
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Figure 3. Ammonium concentrations in leachates (a) and accumulated NH4
+
 losses (b) from 4 

fertilized and control columns along the experiment (average of three replicates). 5 

6 

Figure 3. Ammonium concentrations in leachates (a) and accumu-

lated NH+
4

losses (b) from fertilized and control columns along the

experiment (average of three replicates).

creased sharply in the second day (2.27 L) (Fig. 4). From

the fifth day (5.97 L flow), nitrate concentrations were very

similar in leachates from fertilized and control columns. Ac-

cumulated nitrate losses were also not significantly differ-

ent between fertilized and control columns, suggesting that

leached nitrate comes largely from the soil rather than from

fertilizer tablets, probably because the nitrogen is supplied as

amides and urea, and the medium is inadequate for the for-

mation of nitrates. The loss of nitrogen as nitrate is slightly

lower than the loss of ammonium nitrogen in the fertilized

columns, which is not surprising taking into account the re-

ducing conditions during the experiment. Alva (2006) re-

ported considerably lower NH+4 than NO−3 leaching from

leaching columns fertilized with urea or manure in sandy

soils, but under non-reducing conditions. Other studies us-

ing leaching columns also report a high initial leaching of

NH+4 and NO−3 and the subsequent decrease of these losses

(Sato and Morgan, 2008).

The phosphorus concentration was very low in leachates

from control columns (Fig. 5), in accordance with the

low concentration of available P in these soils (Table 3),
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Table 3. Soil physicochemical properties at the end of the incuba-

tion in soils under the different treatments (average of three repli-

cates, with standard deviation in parentheses).

Control 11–18–11 8–8–16

pH 4.92a 5.70b 6.19b

(0.08) (0.16) (0.09)

C (g kg−1) 17.1a 16.6a 16.8a

(1.84) (2.34) (1.16)

NH+
4

(mg kg−1) 44.0a 51.9a 58.7a

(3.40) (15.1) (6.38)

NO−
3

(mg kg−1) 174.8a 170.9a 194.2a

(11.6) (21.7) (22.1)

Available P (mg kg−1) 17.7a 113.4b 86.4b

(1.95) (8.17) (15.5)

Exchangeable K+ 0.11a 0.31ab 1.03b

(cmol (+) kg−1)

(0.02) (0.14) (0.90)

Exchangeable Ca+2 0.21a 5.50c 1.86b

(cmol (+) kg−1)

(0.04) (0.32) (0.50)

Exchangeable Mg+2 0.11a 0.33a 4.24b

(cmol (+) kg−1)

(0.02) (0.23) (0.40)

Exchangeable Al+3 0.80b 0.08a 0.01a

(cmol (+) kg−1)

(0.03) (0.06) (0.00)

Effective CEC 1.27a 6.23b 7.20b

(cmol (+) kg−1)

(0.05) (0.14) (0.90)

∗ Different letters indicate significant differences (p < 0.001). 1soil: increase

of the amounts of N (N−NO−
3
+ NH+

4
), available P and exchangeable cations

in the fertilized soil columns.

and significantly higher (p < 0.001) in those from fertilized

columns, particularly in treatment 11–18–11 and at the be-

ginning of the experiment (up to 4.67 L percolation). From

the fifth day (5.97 L, 1426 L m−2) leaching losses decreased

dramatically and stabilized at levels similar to the controls.

The cumulative loss was considerably higher in treatment

11–18–11 compared to treatment 8–8–16, as expected from

the higher P content in that treatment (Table 2).

3.1.4 Alkaline and alkaline-earth cations

Similarly to other species, a strong K+ release was observed

in the first 5.97 L of leachate in both fertilized treatments.

From that moment on, the release of K+ went down to lev-

els similar to control (Fig. 6). The cumulative losses of K+

in both fertilizer treatments were markedly superior to those

in the controls during the whole period of the experiment

(Fig. 6), and significantly higher (p < 0.001) in treatment 8–

8–16 than in 11–18–11.

Calcium was also strongly released in treatment 11–18–

11 at the beginning of the experiment (Fig. 7). Contrary to
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Figure 4. Nitrate concentrations in leachates (a) and accumulated NO3
-
 losses (b) from 3 

fertilized and control columns along the experiment (average of three replicates). 4 

5 

Figure 4. Nitrate concentrations in leachates (a) and accumulated

NO−
3

losses (b) from fertilized and control columns along the ex-

periment (average of three replicates).

other elements, after an initial decrease, Ca2+ concentrations

in leachates from this treatment increased again from 7.28 L

percolation, and remained higher than those in the controls

throughout the trial. Despite the Ca contents in tablet 8–8–

16 not being much lower than in 11–18–11 (Table 2), Ca2+

concentrations in leachates in treatment 8–8–16 were higher

than in the controls only in the first 4 days of leaching (4.67 L

percolation); from then on, the values were similar to those of

the control columns and significantly lower (p < 0.005) than

in treatment 11–8–11. This means that, at the end of the ex-

periment, even after 56 L of water has flowed, the 8–8–16

tablet still had high Ca content. At the end of the experiment,

the Ca2+ accumulated in leachates was about 20 times higher

in treatment 11–18–11 compared to that in treatment 8–8–16.

Magnesium leaching was similar in both fertilizer treat-

ments (without significant differences), especially at the be-

ginning of the experiment (Fig. 8). As was the case for other

elements, the greatest loss corresponded to a leachate volume

of 5.97 L (1426 L m−2). From the tenth day (12.28 L percola-

tion), Mg2+ leaching was negligible in treatment 11–18–11,

www.solid-earth.net/5/1351/2014/ Solid Earth, 5, 1351–1360, 2014
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Figure 5. Phosphorus concentrations in leachates (a) and accumulated P losses (b) from 3 

fertilized and control columns along the experiment (average of three replicates). 4 

5 

Figure 5. Phosphorus concentrations in leachates (a) and accumu-

lated P losses (b) from fertilized and control columns along the ex-

periment (average of three replicates).

but continued until the end of the experiment in treatment 8–

8–16 (Fig. 8), in agreement with the greater Mg2+ content of

this tablet (Table 2).

The differences between the two treatments regarding the

amount and type of the elements that have been leached may

be related to the quantity released by each treatment, as well

as the different solubility of the compounds that form the

tablets.

3.2 Change of soil parameters after percolation

At the end of the experiment, pH value was slightly higher

in control columns than that found in the initial soil, which

could result from alkalizing reactions occurring in the reduc-

ing conditions prevailing. Meanwhile, pH value was clearly

higher in fertilized columns (Table 3). In fertilized columns,

cations released by fertilizers may replace acid exchange

cations, which would result in soil alkalization. This seems
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Figure 6. Potassium concentrations in leachates (a) and accumulated K
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6 

Figure 6. Potassium concentrations in leachates (a) and accumu-

lated K+ losses (b) from fertilized and control columns along the

experiment (average of three replicates).

to be particularly remarkable in treatment 8–8–16, which is

richer in K+ and Mg2+; also, leachates from this treatment,

except for the initial period, had higher pH values than those

from treatment 11–18–11 (Fig. 1). The initial acidification

showed by the leachates could be in relation to the presence

of acid cations that had been substituted by other cations pro-

vided by the fertilizers. The carbon concentration in soil de-

creased slightly after the experiment in all columns (Tables 2

and 3).

Ammonium concentrations in soil at the final stage were

higher in the fertilized columns, particularly in treatment

8–8–16 (compared to control columns), but the differences

were not significant. These results were comparable to am-

monium concentrations in leachates. Apparently, treatment

8–8–16 released more ammonium than treatment 11–18–

11. With regard to nitrate, no significant differences were

observed between columns. Nitrogen released by fertilizers
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Figure 7. Calcium concentrations in leachates (a) and accumulated Ca
2+

 losses (b) from 3 

fertilized and control columns along the experiment (average of three replicates). 4 

5 

Figure 7. Calcium concentrations in leachates (a) and accumulated

Ca2+ losses (b) from fertilized and control columns along the ex-

periment (average of three replicates).

may have been leached as ammonium, or, more likely, lost

through de-nitrification processes, taking into account the re-

ducing conditions prevailing during the experiment (Núñez-

Delgado et al., 1997), or immobilized in microbial biomass.

Unlike nitrogen, final available phosphorus concentrations

in fertilized soil columns were notably higher than in con-

trol columns, particularly in treatment 11–18–11, which pro-

vided more P (Table 2). These results are in agreement with

the limited measured P leaching and may be related to the

recognized low mobility of this element in soils, and par-

ticularly in acid soils (Gil-Sotres and Dieaz-Fierros, 1982;

Garcia-Rodeja and Gil-Sotres, 1997).

As for the exchange cations, the concentrations of Ca2+,

Mg2+ and K+ increased in the fertilized columns (Table 3).

Calcium was significantly higher in the fertilized columns

than in the control columns, whereas the 11–18–11 treat-

ment caused clearly higher values than that of the 8–8–16

treatment. Potassium and Mg2+ were higher in treatment 8–

8–16. The relative increases of Ca2+, Mg2+ and K+ in both

fertilized treatments were in agreement with their respective

contributions (more K+ and Mg2+ in 8–8–16, more Ca2+

in 11–18–11). After a water flow equivalent to 13 years of

rainfall, and despite leaching losses, particularly of K+, both
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Figure 8. Magnesium concentrations in leachates (a) and accumulated Mg
+2

 losses (b) from 3 

fertilized and control columns along the experiment (average of three replicates). 4 

Figure 8. Magnesium concentrations in leachates (a) and accumu-

lated Mg+2 losses (b) from fertilized and control columns along the

experiment (average of three replicates).

fertilized soils were significantly enriched in these exchange-

able cations. The remarkable decline of Al3+ in both fertil-

ized treatments, compared to the control columns, is related

to the pH increase (Table 3) and the input of other cations

with fertilizers.

The eCEC was very low in control soils, in accordance

with the low values corresponding to the initial soil (Ta-

ble 1). In fertilized columns, the soil eCEC at the final

stage had significantly increased (Table 3), being moderately

low (between 4 and 9 cmol (+) kg−1), according to Buol et

al. (1975). The increase of eCEC is related to the pH increase,

given the variable-charge nature of the soils used in the ex-

periment.

3.3 Nutrient balances during the experiment

The percentages of elements released from the tablets were

calculated from the nutrient amounts contained initially in

the fertilizer tablets and the amounts remaining at the end

of the experiment (Table 4). Similarly, the percentages of

leaching losses were calculated by comparing the accumu-

lated leaching losses with the total amount of elements re-

leased from the tablets. Table 4 also shows the differences

between the amounts released and leached for each element.
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Table 4. Quantity and percentages of elements released (R) and

leached (L) from the tablets at the end of the experiment (average

values of three replicates, with standard deviation in parentheses).

Treatment N P K+ Ca+2 Mg+2

11–18–11

Released (R) g 5.28 2.18 2.46 1.15 0.24

(0.20) (0.18) (0.12) (0.40) (0.04)

% 99.87 81.09 98.57 64.30 82.70

(0.02) (2.50) (0.14) (11.70) (1.54)

Leached (L) g 0.40 0.92 1.76 0.90 0.19

(0.01) (0.09) (0.16) (0.10) (0.01)

% 7.62 34.32 70.40 50.77 64.25

(0.42) (3.32) (8.24) (10.7) (3.03)

R−L g 4.88 1.27 0.69 0.22 0.05

(0.21) (0.14) (0.20) (0.09) (0.01)

1soil g 0.01 0.09 0.07 0.95 0.02

(0.00) (0.02) (0.01) (0.11) (0.00)

8–8–16

Released (R) g 5.03 0.63 4.44 0.23 1.70

(0.42) (0.10) (0.05) (0.08) (0.13)

% 99.78 36.20 98.95 18.51 58.37

(0.03) (4.05) (0.17) (5.51) (2.72)

Leached (L) g 0.45 0.30 2.80 0.05 0.31

(0.02) (0.04) (0.09) (0.01) (0.05)

% 8.86 17.25 63.80 4.09 10.80

(0.39) (1.52) (2.63) (0.71) (1.41)

R−L g 4.58 0.33 1.57 0.18 1.37

(0.41) (0.05) (0.10) (0.08) (0.08)

1soil g 0.01 0.06 0.32 0.29 0.46

(0.03) (0.01) (0.07) (0.02) (0.05)

Leached: accumulated leaching loss referred to the initial amount in the tablet.

R−L: difference between the amount released from the tablet and the amount leached.

1soil: increase of the amount of N (N−NO3− + NH4+), available P and exchangeable

cations in the fertilized soil columns

The results were compared with the increase in the amounts

of N (ammonium and nitrate), available P and exchangeable

cations, calculated as the difference between data from fer-

tilized and control columns (Table 4). In general, the per-

centages of elements released at the end of the trial were

very high, except for P, Ca2+ and Mg2+ from tablet 8–8–16.

With regard to leaching, it was remarkable the extremely low

percentage of N leached (< 9 %) (Table 4). When compar-

ing the differences between released and leached N (R−L)

with the increase experienced by the forms of available N

in the columns (1soil), it is evident that a very low pro-

portion of the N released from tablets to soil was as am-

monium and nitrate. The nitrogen released by the tablets

may be retained by soil in different ways: immobilized in

microbial biomass or fixed in the interlayers of certain 2:1

clay minerals (Micks et al., 2004; Nieder et al., 2011). Part

of the nitrogen may be lost from soil, either by leaching

or through de-nitrification processes. De-nitrification is ex-

pected to play an important role in the reducing conditions

prevailing during the experiment. This process, as well as

microbial immobilization of N and NH+4 retention in clays,

can help explain the results obtained. Also Paramasivam and

Alva (1997) reported low recovery of the applied N in the

leachate (from 5 to 28 %) in experiments with different urea-

based controlled-release formulations (Meister, Osmocote,

and Poly-S) added to soil columns, attributing it to the com-

bination of loss of N through NH3 volatilization, microbial

assimilation of the applied N and de-nitrification processes.

Phosphorus was leached at low rates (Table 4), as expected

from its well-known low mobility and in agreement with the

increases in soil available P. Differences between R−L and

1soil with regard to available P can be due to P retention in

soil in non-available forms, as well as to P immobilization

in bacteria along the experiment. By contrast, K+ leaching

was relatively high (more than 60 % of the total present in

the tablet). The K+ not leached can remain in the soil ei-

ther as exchange cation or fixed by hydroxy-aluminum ver-

miculites that are very common in these granitic acidic soils,

and due to that fixation a fraction of K+ can be as unchange-

able, causing that 1soil is lower for K+ than expected in

view of R−L data. Núñez-Delgado et al. (1997) also re-

ported a nearly total P retention in soil and low NH+4 and

K+ leaching in column experiments carried out with Gali-

cian soils after the addition of cattle slurry. In another study

also using laboratory columns and different CRF, but with a

lower total water volume (21 L), Broschat and Moore (2007)

obtained a P leaching between 47 and 80 %, lower than that

of N and K+ (> 80 %). These percentages are clearly higher

than those found in our study, probably because Broschat

and Moore (2007) filled up their columns with washed sand,

which had a much lower retention capacity for elements and

compounds. Calcium and Mg2+ leaching, similarly to Ca2+

and Mg2+ release, were relatively high in treatment 11–18–

11 and low in treatment 8–8–16 (Table 4). Contrary to what

happened to NH+4 , K+ and P, Ca2+ and Mg2+ showed low

retention on soils, which could explain the divergences be-

tween R−L and 1soil affecting both cations. Magnesium

corresponding to the 11–18–11 treatment was the element

showing the lowest discrepancies among all those studied,

with an increase of 0.02 g for exchangeable Mg2+ and a con-

tribution of 0.05 g from the tablet. In contrast to what hap-

pened to the other elements, 1soil was slightly higher than

R−L for exchangeable Ca2+, which could be due to the

conversion from un-available to exchangeable affecting some

forms of Ca during the percolation experiment. This anoma-

lous behavior is in accordance with the particular evolution

of leached Ca2+ (Fig. 7), showing an initial decrease, then

further losses of Ca2+ maintained till the end of the experi-

ment.

4 Conclusions

At the end of the trial, after the percolation of an amount

of water equivalent to 13 years of rainfall in the area, re-

leases from fertilizer tablets were more than 80 % for most
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elements. Under the conditions of this study, Ca2+ and Mg2+

were usually released at lower rates, especially in the treat-

ment 8–8–16 (less than 60 %), while more than 99 % of N

was released from both tablets. Despite this, the amounts

leached were generally low when compared with the total

released. Most leaching occurred at the beginning of the ex-

periment, within an interval of flow equivalent to 1.5 years

of rainfall. From that moment on, an increase of pH and a

sharp decrease of nutrient concentrations were observed in

leachates. The overall results indicate that most of the ele-

ments contained in the fertilizers were leached in low per-

centage, referring to the total amounts present in the tablets,

especially in the case of the 8–8–16 treatment. At the end of

the percolating study, the concentrations of available Ca2+,

Mg2+, K+ and P had increased significantly in the soils into

the fertilized columns, along with pH and effective CEC,

showing at the same time a decrease of exchangeable Al3+.

This means that, under the conditions of this study, the fer-

tilizer treatments maintained their effects in these soils even

after the passage of a water flow equivalent to 13-year rain-

fall. In these conditions, the formulation 8–8–16 underwent

a lower overall nutrient loss that would be more suitable for

crops having a nutrient demand sustained over time, also im-

plying lower risks of water pollution, while the formulation

11–18–11 would be more suitable for crops with a strong ini-

tial demand.
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