23 research outputs found

    Monocytes accumulate in the airways of children with fatal asthma

    Get PDF
    Background: Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. Objective: To investigate whether monocytes are recruited to the lungs in paediatric asthma. Methods: Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. Results: Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. Conclusions and clinical relevance: Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.Peer reviewe

    Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development

    Get PDF
    Vascular development is believed to occur first by vasculogenesis followed by angiogenesis. Though angiogenesis is the formation of new vessels, we found that vascular density actually decreases during this second stage. The onset of the decrease coincided with the entry of erythroblasts into circulation. We therefore measured the level of shear stress at various developmental stages and found that it was inversely proportional to vascular density. To investigate whether shear stress was inhibitory to angiogenesis, we altered shear stress levels either by preventing erythroblasts from entering circulation ("low" shear stress) or by injection of a starch solution to increase the blood plasma viscosity ("high" shear stress). By time-lapse microscopy, we show that reverse intussusception (merging of two vessels) is inversely proportional to the level of shear stress. We also found that angiogenesis (both sprouting and splitting) was inversely proportional to shear stress levels. These effects were specific to the arterial or venous plexus however, such that the effect on reverse intussusception was present only in the arterial plexus and the effect on sprouting only in the venous plexus. We cultured embryos under altered shear stress in the presence of either DAPT, a Notch inhibitor, or DMH1, an inhibitor of the bone morphogenetic protein (BMP) pathway. DAPT treatment phenocopied the inhibition of erythroblast circulation ("low" shear stress) and the effect of DAPT treatment could be partially rescued by injection of starch. Inhibition of the BMP signaling prevented the reduction in vascular density that was observed when starch was injected to increase shear stress levels.status: publishe

    Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development

    No full text
    Vascular development is believed to occur first by vasculogenesis followed by angiogenesis. Though angiogenesis is the formation of new vessels, we found that vascular density actually decreases during this second stage. The onset of the decrease coincided with the entry of erythroblasts into circulation. We therefore measured the level of shear stress at various developmental stages and found that it was inversely proportional to vascular density. To investigate whether shear stress was inhibitory to angiogenesis, we altered shear stress levels either by preventing erythroblasts from entering circulation ("low" shear stress) or by injection of a starch solution to increase the blood plasma viscosity ("high" shear stress). By time-lapse microscopy, we show that reverse intussusception (merging of two vessels) is inversely proportional to the level of shear stress. We also found that angiogenesis (both sprouting and splitting) was inversely proportional to shear stress levels. These effects were specific to the arterial or venous plexus however, such that the effect on reverse intussusception was present only in the arterial plexus and the effect on sprouting only in the venous plexus. We cultured embryos under altered shear stress in the presence of either DAPT, a Notch inhibitor, or DMH1, an inhibitor of the bone morphogenetic protein (BMP) pathway. DAPT treatment phenocopied the inhibition of erythroblast circulation ("low" shear stress) and the effect of DAPT treatment could be partially rescued by injection of starch. Inhibition of the BMP signaling prevented the reduction in vascular density that was observed when starch was injected to increase shear stress levels

    Notch1 is pan-endothelial at the onset of flow and regulated by flow

    Get PDF
    Arteriovenous differentiation is a key event during vascular development and hemodynamic forces play an important role. Arteriovenous gene expression is present before the onset of flow, however it remains plastic and flow can alter arteriovenous identity. Notch signaling is especially important in the genetic determination of arteriovenous identity. Nevertheless, the effect of the onset of circulation on Notch expression and signaling has not been studied. The aim of this study is therefore to investigate the interaction of Notch1 signaling and hemodynamic forces during early vascular development. We find that the onset of Notch1 expression coincides with the onset of flow, and that expression is pan-endothelial at the onset of circulation in mouse embryos and only becomes arterial-specific after remodeling has occurred. When we ablate flow in the early embryo, endothelial cells fail to express Notch1. We show that low and disturbed flow patterns upregulate Notch1 expression in endothelial cells in vitro, but that higher shear stress levels do not (≥10 dynes/cm2). Using siRNA, we knocked down Notch1 to investigate the role of Notch1 in mechanotransduction. When we applied shear stress levels similar to those found in embryonic arteries, we found an upregulation of Klf2, Dll1, Dll4, Jag1, Hey1, Nrp1 and CoupTFII but that only Dll4, Hey1, Nrp1 and EphB4 required Notch1 for flow-induced expression. Our results therefore indicate that Notch1 can modulate mechanotransduction but is not a critical mediator of the process since many genes mechanotransduce normally in the absence of Notch1, including genes involved in arteriovenous differentiation.status: publishe

    Rheology of embryonic avian blood

    No full text
    Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where the relationship between shear rate and shear stress is nonlinear. In this work, we analyzed the non-Newtonian behavior of embryonic chicken blood using a microviscometer and present the apparent viscosity at different hematocrits, different shear rates, and at different stages during development from 4 days (Hamburger-Hamilton stage 22) to 8 days (about Hamburger-Hamilton stage 34) of incubation. We chose the chicken embryo since it has become a common animal model for studying hemodynamics in the developing cardiovascular system. We found that the hematocrit increases with the stage of development. The viscosity of embryonic avian blood in all developmental stages studied was shear rate dependent and behaved in a non-Newtonian manner similar to that of adult blood. The range of shear rates and hematocrits at which non-Newtonian behavior was observed is, however, outside the physiological range for the larger vessels of the embryo. Under low shear stress conditions, the spherical nucleated blood cells that make up embryonic blood formed into small aggregates of cells. We found that the apparent blood viscosity decreases at a given hematocrit during embryonic development, not due to changes in protein composition of the plasma but possibly due to the changes in cellular composition of embryonic blood. This decrease in apparent viscosity was only visible at high hematocrit. At physiological values of hematocrit, embryonic blood viscosity did not change significantly with the stage of development

    The glycocalyx is present as soon as blood flow is initiated and is required for normal vascular development

    Get PDF
    AbstractThe glycocalyx, and the thicker endothelial surface layer (ESL), are necessary both for endothelial barrier function and for sensing mechanical forces in the adult. The goal of this study is to use a combination of imaging techniques to establish when the glycocalyx and endothelial surface layer form during embryonic development and to determine the biological significance of the glycocalyx layer during vascular development in quail embryos. Using transmission electron microscopy, we show that the glycocalyx layer is present as soon as blood flow starts (14 somites). The early endothelial glycocalyx (14 somites) lacks the distinct hair-like morphology that is present later in development (17 and 25 somites). The average thickness does not change significantly (14 somites, 182nm±33nm; 17 somites, 218±30nm; 25 somites, 212±32nm). The trapping of circulating fluorescent albumin was used to evaluate the development of the ESL. Trapped fluorescent albumin was first observed at 25 somites. In order to assess a functional role for the glycocalyx during development, we selectively degraded luminal glycosaminoglycans. Degradation of hyaluronan compromised endothelial barrier function and prevented vascular remodeling. Degradation of heparan sulfate down regulated the expression of shear-sensitive genes but does not inhibit vascular remodeling. Our findings show that the glycocalyx layer is present as soon as blood flow starts (14 somites). Selective degradations of major glycocalyx components were shown to inhibit normal vascular development, examined through morphology, vascular barrier function, and gene expression

    Notch1 is pan-endothelial at the onset of flow and regulated by flow.

    No full text
    Arteriovenous differentiation is a key event during vascular development and hemodynamic forces play an important role. Arteriovenous gene expression is present before the onset of flow, however it remains plastic and flow can alter arteriovenous identity. Notch signaling is especially important in the genetic determination of arteriovenous identity. Nevertheless, the effect of the onset of circulation on Notch expression and signaling has not been studied. The aim of this study is therefore to investigate the interaction of Notch1 signaling and hemodynamic forces during early vascular development. We find that the onset of Notch1 expression coincides with the onset of flow, and that expression is pan-endothelial at the onset of circulation in mouse embryos and only becomes arterial-specific after remodeling has occurred. When we ablate flow in the early embryo, endothelial cells fail to express Notch1. We show that low and disturbed flow patterns upregulate Notch1 expression in endothelial cells in vitro, but that higher shear stress levels do not (≥10 dynes/cm2). Using siRNA, we knocked down Notch1 to investigate the role of Notch1 in mechanotransduction. When we applied shear stress levels similar to those found in embryonic arteries, we found an upregulation of Klf2, Dll1, Dll4, Jag1, Hey1, Nrp1 and CoupTFII but that only Dll4, Hey1, Nrp1 and EphB4 required Notch1 for flow-induced expression. Our results therefore indicate that Notch1 can modulate mechanotransduction but is not a critical mediator of the process since many genes mechanotransduce normally in the absence of Notch1, including genes involved in arteriovenous differentiation

    Low levels of laminar and oscillatory shear stress upregulate <i>Notch1</i> in endothelial cells.

    No full text
    <p>Human abdominal aortic endothelial cells were exposed to laminar shear stress between 1 and 15 dynes/cm<sup>2</sup> and to three types of oscillatory flow for 1 hour. <i>Notch1</i> is upregulated by low levels of laminar shear stress (1–5 dynes/cm<sup>2</sup>, n = 4–10) but not by shear stress levels exceeding 10 dynes/cm<sup>2</sup> (n = 4)(A). Oscillatory shear stress (0 ± 3 dynes/cm<sup>2</sup>, n = 4) and shear stress with some retrograde flow (2 ± 3 dynes/cm<sup>2</sup>, n = 16) also increase mRNA expression of <i>Notch1</i>, but pulsatile shear stress (5 ± 3 dynes/cm<sup>2</sup>, n = 4) does not (B). Expression was normalized to static control in all cases. All values are mean ± SEM., * p < 0.05; ** p < 0.01; *** p < 0.001; two-tailed Student’s t-test.</p

    Notch1 knockdown does not affect shear-induced upregulation of <i>Klf2</i>.

    No full text
    <p>Cells with or without Notch1 were exposed to 5 dynes/cm<sup>2</sup> of laminar shear stress for one hour. The expression of typical shear-induced genes was assessed. <i>Klf2</i> and <i>VEGFR2</i> were upregulated by low levels of laminar shear stress, but not <i>Vinculin</i>. Notch1 knockdown did not affect <i>Klf2</i> expression in response to flow, whereas it prevented the shear-dependent upregulation of <i>VEGFR2</i>. All values are mean ± SEM (n = 4–16 for all conditions). * p < 0.05; *** p < 0.001; Two-way ANOVA and Tukey’s post hoc comparisons.</p

    Notch1 is required for flow-induced regulation of half of Notch ligands and effectors.

    No full text
    <p>The expression of Notch ligands and effectors in response to flow (5 dynes/cm<sup>2</sup> for one hour) was assessed. Except for <i>Hey2</i> and <i>Notch4</i>, all genes investigated were upregulated by laminar shear stress (5 dynes/cm<sup>2</sup>). When Notch1 was knocked down in cells, flow-induced upregulation of Notch ligands and effectors was significantly impaired, with the exception of <i>Dll1</i>. All values are mean ± SEM (n = 4–16 for all conditions). * p < 0.05; ** p < 0.01; *** p < 0.001; Two-way ANOVA and Tukey’s post hoc comparisons.</p
    corecore