855 research outputs found

    A Dynamical Study of the Evolution of Pressure Waves Propagating through a Semi-Infinite Region of Homogeneous Gas Combustion Subject to a Time-Harmonic Signal at the Boundary

    Get PDF
    In this dissertation, the evolution of a pressure wave driven by a harmonic signal on the boundary during gas combustion is studied. The problem is modeled by a nonlinear, hyperbolic partial differential equation. Steady-state behavior is investigated using the perturbation method to ensure that enough time has passed for any transient effects to have dissipated. The zeroth, first and second-order perturbation solutions are obtained and their moduli are plotted against frequency. It is seen that the first and second-order corrections have unique maxima that shift to the right as the frequency decreases and to the left as the frequency increases. Dispersion relations are determined and their limiting behavior investigated in the low and high frequency regimes. It is seen that for low frequencies, the medium assumes a diffusive-like nature. However, for high frequencies the medium behaves similarly to one exhibiting relaxation. The phase speed is determined and its limiting behavior examined. For low frequencies, the phase speed is approximately equal to sqrt[ω/(n+1)] and for high frequencies, it behaves as 1/(n+1), where n is the mode number. Additionally, a maximum allowable value of the perturbation parameter, ε = 0.8, is determined that ensures boundedness of the solution. The location of the peak of the first-order correction, xmax, as a function of frequency is determined and is seen to approach the limiting value of 0.828/sqrt(ω) as the frequency tends to zero and the constant value of 2 ln 2 as the frequency tends to infinity. Analytic expressions are obtained for the approximate general perturbation solution in the low and high-frequency regimes and are plotted together with the perturbation solution in the corresponding frequency regimes, where the agreement is seen to be excellent. Finally, the solution obtained from the perturbation method is compared with the long-time solution obtained by the finite-difference scheme; again, ensuring that the transient effects have dissipated. Since the finite-difference scheme requires a right boundary, its location is chosen so that the wave dissipates in amplitude enough so that any reflections from the boundary will be negligible. The perturbation solution and the finite-difference solution are found to be in excellent agreement. Thus, the validity of the perturbation method is established

    Molecular Design of Crosslinked Copolymers

    Get PDF
    A complete methodology for the computational molecular design (CMD) of crosslinked polymers is developed and implemented. The methodology is applied to the design of novel polymers for restorative dental materials. The computational molecular design of crosslinked polymers using optimization techniques is a new area of research. The first part of this project seeks to develop a novel data structure capable of adequately storing a complete description of the crosslinked polymer structure. Numerical descriptors of polymer structure are then calculated from the data structure. Statistical methods are used to relate the structural descriptors to experimentally measured properties. An important part of this project is to show that useful property prediction models can be developed for crosslinked polymers. Desirable property target values are then set for a specific application. Finally, the structure-property relations are combined with a Tabu search optimization algorithm to design improved polymers. Tabu search allows much flexibility in the problem formulations, so a major goal of this project is to show that Tabu search is a effective method for crosslinked polymer design. To implement the molecular design procedure, a software package is developed. The software allows for easy graphical entry of polymer structures and property data, and contains a Tabu search optimization routine. Since computational molecular design of crosslinked polymers is a relatively new area of research, the software is designed to be easily modified to allow for extensive numerical experimentation. Finally, the computational design methodology is demonstrated for the design of polymers for restorative dental applications. Using the computational molecular design methodology developed in this project, several monomers are found that may offer a significant improvement over a standard HEMA/bisGMA formulation. The results of the case study show that the new data structure for crosslinked polymers is effective for calculation of topological descriptors and roperty models can be developed for crosslinked polymers. Tabu search is also shown to be an effective optimization method

    A Dynamical Study of the Evolution of Pressure Waves Propagating through a Semi-Infinite Region of Homogeneous Gas Combustion Subject to a Time-Harmonic Signal at the Boundary

    Get PDF
    In this dissertation, the evolution of a pressure wave driven by a harmonic signal on the boundary during gas combustion is studied. The problem is modeled by a nonlinear, hyperbolic partial differential equation. Steady-state behavior is investigated using the perturbation method to ensure that enough time has passed for any transient effects to have dissipated. The zeroth, first and second-order perturbation solutions are obtained and their moduli are plotted against frequency. It is seen that the first and second-order corrections have unique maxima that shift to the right as the frequency decreases and to the left as the frequency increases. Dispersion relations are determined and their limiting behavior investigated in the low and high frequency regimes. It is seen that for low frequencies, the medium assumes a diffusive-like nature. However, for high frequencies the medium behaves similarly to one exhibiting relaxation. The phase speed is determined and its limiting behavior examined. For low frequencies, the phase speed is approximately equal to sqrt[ω/(n+1)] and for high frequencies, it behaves as 1/(n+1), where n is the mode number. Additionally, a maximum allowable value of the perturbation parameter, ε = 0.8, is determined that ensures boundedness of the solution. The location of the peak of the first-order correction, xmax, as a function of frequency is determined and is seen to approach the limiting value of 0.828/sqrt(ω) as the frequency tends to zero and the constant value of 2 ln 2 as the frequency tends to infinity. Analytic expressions are obtained for the approximate general perturbation solution in the low and high-frequency regimes and are plotted together with the perturbation solution in the corresponding frequency regimes, where the agreement is seen to be excellent. Finally, the solution obtained from the perturbation method is compared with the long-time solution obtained by the finite-difference scheme; again, ensuring that the transient effects have dissipated. Since the finite-difference scheme requires a right boundary, its location is chosen so that the wave dissipates in amplitude enough so that any reflections from the boundary will be negligible. The perturbation solution and the finite-difference solution are found to be in excellent agreement. Thus, the validity of the perturbation method is established

    To Illuminate Literature

    Get PDF

    The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Get PDF
    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements

    The Role of the Bracken Fern in Upper Gastrointestinal Tract Malignancies: A Systematic Review of the Evidence

    Get PDF
    Background: The multifactorial origin of upper alimentary tract cancers encompasses environmental factors mainly associated with diet. Pteridium aquilinum—bracken fern—is the only higher plant known to cause cancer in animals. Its carcinogenic toxin, ptaquiloside, has been identified in milk of cows and groundwater. Humans can be directly exposed by consumption of the plant, contaminated water or milk, and spore inhalation.Methods: In order to determine the association between bracken and upper alimentary tract cancers a systematic search was conducted using MEDLINE, PubMed, EMBASE, Current Contents Connect, Cochrane library, Google Scholar, Science Direct, and Web of Science.Results: Original data was abstracted from each study, the pooled odd ratio and confidence intervals were not calculated as there was no comparable data. However, each study showed a substantial increased risk associated with bracken fern.Conclusion: The current medical literature suggests a serious risk to human health from bracken, and increasing media coverage of the subject is likely to lead to greater education and prevention strategies. Further epidemiological studies are required

    Is Human Papillomavirus (HPV)-associated Esophageal Cancer due to Oral Sex?

    Get PDF
    N/

    Noncardiac Chest Pain in Young Patients: Author's Reply

    Get PDF
    • …
    corecore