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Abstract

In this dissertation, the evolution of a pressure wave driven by a harmonic signal on the
boundary during gas combustion is studied. The problem is modeled by a nonlinear, hyperbolic
partial differential equation. Steady-state behavior is investigated using the perturbation method
to ensure that enough time has passed for any transient effects to have dissipated. The zeroth,
first and second-order perturbation solutions are obtained and their moduli are plotted against
frequency. It is seen that the first and second-order corrections have unique maxima that shift to
the right as the frequency decreases and to the left as the frequency increases. Dispersion
relations are determined and their limiting behavior investigated in the low and high frequency
regimes. It is seen that for low frequencies, the medium assumes a diffusive-like nature.
However, for high frequencies the medium behaves similarly to one exhibiting relaxation. The
phase speed is determined and its limiting behavior examined. For low frequencies, the phase

speed is approximately equal to /w/(n + 1) and for high frequencies, it behaves as 1/(n+1),

where n is the mode number. Additionally, a maximum allowable value of the perturbation
parameter, £= 0.8, is determined that ensures boundedness of the solution. The location of the
peak of the first-order correction, X,,,, , as a function of frequency is determined and is seen to

approach the limiting value of 0.828/ V@ as the frequency tends to zero and the constant value

of 2 In 2 as the frequency tends to infinity. Analytic expressions are obtained for the
approximate general perturbation solution in the low and high-frequency regimes and are plotted
together with the perturbation solution in the corresponding frequency regimes, where the
agreement is seen to be excellent. Finally, the solution obtained from the perturbation method is
compared with the long-time solution obtained by the finite-difference scheme; again, ensuring
that the transient effects have dissipated. Since the finite-difference scheme requires a right
boundary, its location is chosen so that the wave dissipates in amplitude enough so that any
reflections from the boundary will be negligible. The perturbation solution and the finite-
difference solution are found to be in excellent agreement. Thus, the validity of the perturbation
method is established.

Keywords: nonlinear hyperbolic equation, gas combustion, perturbation, non-standard finite-
difference, pressure



Chapter 1. Introduction

1.1 Combustion Basics

Combustion is a sequence of exothermic reactions between a fuel and an oxidant resulting
in the liberation of heat and the conversion of chemical species. The fuel can either be a solid,
liquid, or gas. Combustion phenomena have been studied kinematically as reaction-diffusion
(RD) processes. Some physical examples of combustion phenomena modeled as RD processes
are: the study of wild land fires modeled as combustion in two dimensional fuel beds [3, 4], the
spread of fire through a porous fuel bed [9], the pyrolysis and combustion of bark [6] and
ignition criteria pulverized coal flow [33]. Source terms corresponding to various diffusion

models are presented below.

1.2 Diffusion Models

Combustion has been studied as a diffusion process from a kinematic point-of-view. The
kinematic models arise using the heat (diffusion) equation, flux conditions, and conservation

laws. Fick’s law, which relates the mass flux q to the density gradient Vp via q =-DVp,

when combined with the continuity equation (mass conservation equation), 9P +V.q=S(r),

ot

where r is the position vector, leads to the general scalar RD equation [1, 3]

dp _9p _
E DW—S(p, X,t), (121)



a parabolic partial differential equation [1, 8, 10]. Here, the diffusivity D is constant for media

and the source term S ( p, x, t) accounts for the processes of production and annihilation. There

are several forms for the source term that of particular importance to researchers in many fields.
Some examples of source terms are listed below.

e The Arrhenius law [32], which states that the reaction-rate constant k is

empirically related to the temperature by k = Ae W , where A and E are the
frequency factor and activation energy, respectively, and R, is the universal gas
constant [32]. Still other models include a convection term. This convection term
can be combined with the Arrhenius law.

e This approach has been applied by considering a linear convection term coupled
with the Arrhenius law: —B(n—n, )+ Ae W, Here, B is positive and n is the

concentration.
e In[3, 4], the temperature spread in a two dimensional fuel bed is modeled by

incorporating the linear convection term, but replacing the Arrhenius law with

ce”™H (t), where ¢ and & are positive constants and H (), is the step
function, i.e., S ~—b(n—ny)+ce ™H(t).

e If § is a constant function, then the telegrapher equation results. Derivations of
the telegrapher equation generally assumes a constant signal propagation speed.
However, in [20], the model is generalized to allow for variable propagation
speeds.

e If S=ap(1-p/p,),the Pearl-Verhulst growth law, the Fisher-KPP equation

results (see below). Here the positive constants & and p, are the growth-rate



coefficient and saturation density, respectively. The Pearl-Verhulst law is used in

some diffusive models of population growth [30, 31].

e S=ap|[1-(p/p,)" | is called the Fisher law.

o S=app" [1 —(p/p,)" }, (m =2, 3) is called the mth-order Fisher law. The

case m = 2 is also called the Zeldovich law [34].

o S=¢0(uy—u"),(0<e<1) is called the Stefan-Boltzmann law [5, 29]. Here,

£ 1s the emissivity and the positive constants ¢ and u, are the Stefan-Boltzmann

constant and surrounding temperature, respectively.

1.3 The Fisher-KPP Equation

Of premium importance is when the source term is given by the Pearl-Verhulst law
resulting in the Fisher-KPP equation, owing its name to Fisher [11] and Kolmogoroff, et al. [19],
who independently investigated the behavior of the spread of an advantageous gene in a
population through random mating by modeling it as a wave-like, as opposed to a diffusive
process. The Fisher-KPP equation is a nonlinear, scalar RD equation with a Pearl-Verhulst
growth law. The Fisher-KPP equation is obtained by combining the balance law for the species
or mass with the constitutive relation known as Fick’s law, which states that the mass flux is
proportional to the negative of the temperature gradient: q = —DVp . The positive constant D is
called the diffusivity and depends on the material properties. The Fisher-KPP equation occurs in

many areas other than the life sciences, such as the physical sciences and the social sciences

[2, 28].



1.4 More Realistic Models of Diffusion: The Maxwell-Cattaneo Model and

the GNII Flux Law

The diffusion equation obtained in Section 1.2 implies that a material diffusion at any point
in a material will be felt instantaneously. This unphysical feature was first discovered as a
“paradox of heat conduction (diffusion)” by Maxwell in 1867 and researchers in the theory of
heat conduction, where Fick’s law is known as Fourier’s law, found it necessary to modify it,
eliminating the unphysical result of instantaneous transmission of information across the system
[15, 30]. It is most evident under low temperatures/concentrations and high heat-flux conditions.

To avoid the paradox of diffusion, we consider the Maxwell-Cattaneo (MC) model, which
predicts that diffusion results from damped temperature waves that propagate with finite speed

[12, 20], by including a relaxation rate 7 in the flux condition. By defining the operator

L=1+7 Q, the MC model can be written in operator form as

Lq=-DV, (1.4.1)

Applying the operator L to the continuity equation % +V-q = S(p), where the function

S (,0) is, in general, nonlinear gives

il%ﬁ-V'ql:i[S(p)}, (1.4.2)



or, expanding and using Equation (1.4.1),

dp ., _ P o2 _
W+Toﬁ DV4p=S(p)+

08

Togr (1.4.3)

a linear, damped wave equation with a source.

Note that in the limit, 7, — 0, Equation (1.4.3) reduces to the (static diffusion)

equation. Then, for 7, > 0, we have, upon dividing both sides of Equation (1.4.3) by 7,

L 0p 9% o2 . dS
1 _ 1 — 1 ot
T, E+ﬁ DTO \Y p=T, S(,o)-i— 9 (1.4.4)
Now, letting 7, — oo and assuming the quantity D7, ! remains bounded, we obtain a
(propagation/combustion) equation
p_, 292, 98 (1.4.5)

where the quantity D7,! = c_? is the square of the speed of the wave. In the limit of infinite

relaxation time, the MC model corresponds to the GNII flux model. GNII is the second of three
versions of a theory of thermoelasticity developed in the 1990s by Green and Nagdi [13, 14].
Recently, the transient behavior of GNII model has been studied by Jordan and Puri [18].

When the source term is the Pearl-Verhulst law, we have

oS 0

ot~ Ot




Thus, Equation (1.4.5) becomes

82,0 2 2 2p 8,0
— =all——|=~
atQ Cso” V7P « . ot
or
2
gtg - O‘[l . % % =0. (1.4.6)

1.5 A Dynamical Model of Combustion: A Microscopic Approach

Most models of combustion are kinematic models. However, Rosen [24] studied a
dynamical model of the fluid flow and the mechanism by which liquid propellant droplets are
entrained. An equation for pressure waves in the combustion field is developed, which is then
used to analyze the stability of the pressure waves. To simplify the analysis, only processes
satisfying the following conditions are considered:

1. The analysis is confined to one spatial dimension.

2. Only fuels for which the average Reynold’s number is small were studied. This
ensures entrainment of the droplets in the burned gas flow.

3. Viscous effects of the fluid in the longitudinal direction are assumed negligible.

4. Combustion of the droplets is governed by one-step rate controlling physical and
chemical processes.

5. The local density of the burned gas is related to the local pressure algebraically.

The derivation begins with four governing equations: the conservation laws for mass and

momentum, and the production rate and process relation for the burned gas:



dp  9(pu) _

at ox
ou Ju 10P
—+tu—+—5—=0
ot ox pox , (1.5.1)
0w Jdw :
§+ u=-= f (@, P; fluid element )
wp=g(P)

where p, u, P and @ are the mixture density, mixture velocity, pressure and weight fraction of
the burned gas, respectively. The burning rate function f may depend parametrically on the
fluid element. As a result, both homogeneous and heterogeneous combustion is admitted. For
this investigation, it is assumed that the burning rate function and process relation to have the
form

flo, Piy) =P ¢p(wry) m21

, (1.5.2)
g(P):(—bP+a)_1 a,b>0

where i represents the dependency on the fluid element and is a Lagrangian coordinate defined
by dy = pdx — pudt, m is the effective order of the physical or chemical process controlling
the combustion of the droplets, and the constants a, b give the “tangent-gas” behavior [7] and
relate to average conditions in the burned gas and ¢ is nonnegative and vanishes for all fluid
elements at the initial and final states of combustion. For practical cases, the constant m ranges
between 1 and 3.

Upon utilizing the Lagrange coordinate, manipulating the resulting equations and using

the assumed forms for f and g, the governing equation for pressure waves is obtained

9P

2
a P ¢8¢P2m 2( P b)_7 O

az+¢[b(m+1)P”” a(m-1)P* 15+



Outside the region of active combustion, after averaging over @ as @ varies from @, to 1
(Outside the region of combustion, @ is either @, or 1.), and holding P and its derivatives

fixed, the following equation results

1 aZP - m—1 __ _ m—2 aP_BZP —
5(1+%)aW+¢[b(m+l)P a(m I)P ]E 81//2 =

Here, the middle term is due to the interaction of the pressure waves with the combustion
process, i.e., a “friction term”, with the quantity ¢ [b(m +1) P"" —a(m—1) P"]being the
“friction coefficient”. The pressure waves are only stable if and only if this quantity is positive.

This results in the necessary and sufficient condition for local stability of pressure waves which

is given by

bP,

C

m—1

b

a m+1

where P. is the average chamber pressure. The effective polytropic index for the burned gas at

chamber pressure is defined as

dinP a

=— =—1
"= dmn(ap)|,, bR

(1.5.3)

where a polytropic gas is a gas such that there exists a constant, the polytropic index, k , such

that PV* = constant , where 1.0 < k < 1.4.



The validity of the RHS of Equation (1.5.3) can be demonstrated using the last equation

in (1.5.1) for the process relation of the burned gas. Taking logarithms of both sides, we have,

using the second equation in (1.5.2),

In(awp)=-In(-bP+a).

Differentiating Equation (1.5.4) with respect to P gives

din(awp) _ din(-bP+a)_ b
P dP  —bP+a’

Then, from Equations (1.5.4) and (1.5.5), we have

dlnP _ dInP dP 1_—bP+a_ a

din(wp) dP dln(ap) P b TP

(1.5.4)

(1.5.5)

(1.5.6)

Evaluating Equation (1.5.6) at P. gives the RHS of Equation (1.5.3). In terms of the effective

polytropic index, the pressure waves are stable if and only if

2
m<l+—.
K

(1.5.7)

To relate € and x, we recall that € = bP,/a. Inverting, multiplying and dividing by P. and

using Equation (1.5.3), we have

C

E:(K+1)-—.

(1.5.8)



1.6 Idealization to Continuum Model for m = 2

This section deals with the macroscopic formulation of a dynamical model of gas
combustion as discussed in Section 1.5 [25]. Specifically, the simplest nonlinearity is considered
in the “friction term” (corresponding to m = 2 ) of the hyperbolic pressure wave equation.

By combining the conservation laws for mass and momentum, and assuming that the
excess local burning rate depends on the local pressure parabolically, and since the excess local
burning rate is given by the material derivative of a thermodynamic quantity that is linear in the
pressure and specific volume of the gas, mathematically the fifth assumption in Section 1.5 is

given by

D,[P+—j:a(P—B)+b(P—B)2,

where D, =d/dt +u d/dx is the material derivative. Using a Lagrange coordinate, the following

hyperbolic pressure wave equation results

2P P P _

y—[Zb(P—PC)+a]§—W— , (1.6.1)

where a < 0 and the quantity |» (P—P,)/a| is small, admitting application of perturbation

techniques. We note that the equation above corresponds precisely to the m = 2 case discussed
in Section 1.6. Thus, a two-stage combustion process corresponds to the simplest type of

nonlinearity, namely parabolic.

10



1.7 Statement of Problem

We investigate the behavior of the evolution of the damped pressure waves propagating
through a one-dimensional, semi-infinite spatial region in which there is uniform, homogeneous
gaseous combustion [26] subject to a time-harmonic signal at the boundary. This problem is

modeled by the Boundary Value Problem (BVP):

0P OP 0°P
PDE: ——> —[2b(P—P == =0

op 12(P—FR)+al o ——5
BC #1: P(0,t) = P sinwt (1.7.1)
BC #2: P(oo,1)=0

1.8 Method of Investigation

The investigation will be carried out by considering a harmonic signal that perturbs the
initial state of a homogeneous gas in a cavity, such that certain conditions formulated by G.
Rosen [26] and stated in Chapter 3 are satisfied, triggering combustion. The resulting pressure
waves that emerge after all transient effects have dissipated will then be analyzed. Formally, we
shall use perturbation analysis as outlined in [10] to solve BVP (1.7.1). However, rather than
using the boundary conditions in BVP (1.7.1), we shall use assume P to be complex, P . Thus

we shall instead solve the BVP:

o*P oP P

PDE: W—[Zb(?—%)-ﬁ-a]-a—y =0
BC I: P(o,t):%ge*fw . (1.8.1)
BC 2: P00, t)=0

11



Then, for the final solution, we shall take P = P + c.c., where c.c. denotes the complex

conjugate.

1.9 Organization of Dissertation

In Chapter 2, we begin by non-dimensionalizing BVP (1.8.1). Next, we write the (non-
dimensional) solution as # , where the bar indicates that the quantity is non-dimensional. We
then use the perturbation method to determine % through second-order: #,, #; and P, .

In Chapter 3, we first determine analytic expressions for the real and imaginary parts of
the dispersion relations, which we denote by @, and (3, , respectively. Next, we examine the low
and high frequency limiting behavior of @, and (3, and asymptotic expressions are obtained for
both limits. The phase speeds, which we denote by vy, ,, , are analyzed in a similar way.

From Figure 2, it is readily seen that the modulus of the first-order correction, |#;

possesses a unique maximum value. In Chapter 4, we investigate the behavior of the location of

this maximum, which we denote by X, in terms of frequency w . First, a transcendental
equation is obtained relating X,,,, and w . This is done by determining an analytic expression for
|50_1 | and determining its spatial derivative, d | P, | / dx . The maximum is then a zero of the

derivative.

12



In Chapter 3, we examine the dispersion relations and phase speeds of the pressure wave.
First, we derive expressions for @, and 3, . Then, we investigate and obtain the low and high-
frequency limits of @, and 3, . Next, we study the behavior of the phase speeds. We derive an
expression for the phase speed, denoted by vy, ,, , valid for all frequency ranges. Finally, we
study the low and high-frequency limiting behavior of vy, , .

The location of the peak of the modulus of the first-order correction, X, , and
constraints on the perturbation parameter, ¢, are investigated in Chapter 4. X,,,, is determined
first. An equation is derived giving X, as a function of frequency. Then, the low and high-
frequency limiting behaviors are studied. Analytic expressions are obtained for X,,,, in these
regions.

Chapter 5 provides details of the perturbation solution. The real partial solutions Ry, P,

and P, are simplified using P, = P; + c.c.. Next, real analytic expressions are obtained for the

low and high-frequency limits, denoted by P,“" and P,”", respectively, for n = 0, 1 and 2.

These are then compared with the solution valid for all frequency ranges P = By + ¢P, + 2P, .
In Chapter 6, the solution is obtained using a (non-standard) finite-difference (FD)
scheme, denoted by 7, and is compared with the perturbation solution P . First, the convergence

of the FD solution is verified over one quarter-wavelength. Next, the position of the right
boundary needed by the FD scheme, denoted by L is determined so that the amplitude of p
decays to 10% of its value at the source of the harmonic signal by one spatial-increment (as used
in the FD computation) to the left of L. A similar treatment is then given to the perturbation

solution P . The position (denoted by L for comparison with p ) is determined so that the

13



amplitude of P decays to 10% of its value at the source by one quarter-wavelength to the left of
L . The validity of the perturbation solution is then established by comparing P with 5 .
Specifically, L is taken fixed at the position determined previously. Time snapshots of the
evolutions of P with p are then plotted where the (discrete) FD solution is superimposed onto
the corresponding perturbation solution. Finally, the validity of replacing the FD solution with

the linear part of the perturbation solution P, for locations X > L is established by plotting »

over the interval (0, L) and the plot of By for X > L.
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Chapter 2. Determining the Zeroth-Order Term and the First and

Second-Order Corrections

2.1 Overview

In this chapter, we use the perturbation method to determine the approximations to the solution
of BVP (1.8.1) up through second-order. In Section 2.2, we re-write BVP (1.8.1) in non-
dimensional form. Next, in Section 2.3, we use perturbation analysis to derive equations for the
zeroth-order solution and the first two correction terms. Sections 2.4—2.5 are devoted to

determining the solutions to the equations obtained in Section 2.3.

2.2 Non-Dimensionalizing the Equation
We wish to re-write BVP (1.8.1) in a non-dimensional form. Let P’ = P — P, and P = P'/Pa1 .

Then, the PDE in BVP (1.8.1) becomes

co ——(2bPaF+a)—t——:O, (2.3.1)

where P, is the pressure amplitude at the left boundary of the vessel. Then, sincea < 0, we

havea = —|a|, and in terms of the non-dimensional time 7 = #/7 and the non-

dimensional x = x/L,

-
C627_723 P |a

ot T

2bP, oP 1 0°P
APl |=—=== =
O =

where 7 is the characteristic time and L = c(7 is the characteristic length.
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Next, let a = |a |cj7 and € = 2bP, /|a|. Then,

o°P oP  9°P

W—a(sP—l)at 57 =0. (2.3.2)

Finally, letting v = w7 be the non-dimensional frequency, the corresponding boundary

conditions are given by

— i
P(O,7)=—=e'" 4 cc
(0.7)=5 (2.3.3)
P(oo,7)=0
Let P = Py + €P, + 2P, . Then Equation (2.3.2) becomes

82E)+8E)_82E) 0°P, 3_131_32151_133_150

or? ot ox’ o> " or  ox> Cor
(2.3.4)

o’p, OB, _0°P, 5 OR _ 5 OR
re| G g R R Ay |rol) =

To be zero, each power of € must vanish separately. Thus, we have the following system of

coupled partial differential equations

0 _ 2.3.
grr ot ox? (2.35)
O°R OB _UR_3 R (2.3.6)
pr: ot oxr ot "
0*P, 0P, 0°P, = 0P, =O0P
2 _ — B = = 2.3.7
orr "ot o g Thg (2.3.7)

16



For the sake of mathematical simplicity, we assume general solutions of the form

P(% 7)==V, (%)e "o 4 cc. (2.3.8)

|

where Equation (2.3.8) can be written as P, = P; + c.c..

2.3 The Zeroth-Order Term

Substituting Equation (2.3.8) (withn = 0) into Equation (2.3.5) gives

Zin e | 2w e |- Ll iam e |=o,
or
0= [ 20 (3) e - L (%) | =0,
or
O V() e iV (F) e — V) (T e =0,
or, dividing through by e~ ot
W V() —iwVe(F) -V (F)=0,
or, letting ky = &2 +i T,
Vo' () + ko Vo(F)=0. 2.4.1)

17



The general solution of Equation (2.4.1) is given by

Vo(f) = ZO 6’”;0} + EO 6’_”;0} .

Since ko =0y + ZBO (&0, BO > O), we have e_i kox _ e—l((lo+lﬁo)x — ¢! &Ox'eﬁoxﬁoo as

X — 00 , which implies B, = 0 and

Then

From the first BC, we have
7(0,7) :Lz'zoe-m _ 1wt
Thus, Ay = 1, and so
F(x,T) = Loilkosar), (2.4.2)

Figure 1 shows the plot of |¢§ | versus position for several values of frequency. Here we

see that |¢§ | <1 forall ¥ = 0. In particular, |} | is monotonically decreasing over x with its

maximum value of 1 at x = 0.

18



Figure 1. | SD; | versus x for w = 0.1 (solid), 0.25 (short-dashed), 0.5 (dotted), 1.0 (dot-dashed) and 10.0
(long-dashed).

2.4 The First-Order Correction

Substituting Equation (2.3.8) (with n = 1) into Equation (2.3.6) gives

Ziwmy e |+ Z L am e |- Ll L g ey ee
— 3 R(F) e T L (7).
or
Zam e |+ 2z e |- g x) e

19



or
—4@‘71(7)672”77 — 2 @‘71(7)672”77 —‘71”(7)672”7? _ _iu—)VOz(f)efzz‘QT,

—2iwt

or, dividing through by —e ,
A5 V(T 20 WV (X)) + V(7)) = ioV5 (7).,
or, letting k2 = 4&* 4+ 2i &,
V(%) + &k V(%) =0V (X). (2.5.1)
The general solution is given by

VI(X) = Zl 6’”;1} -|— El e_i];l} + 51 6,21'];0}'

Again, we must have B; = 0. Therefore,

V(%)= A ehT + C ¥kt (2.5.2)

Substituting Equation (2.5.2) into Equation (2.5.1) gives

_Ezzleﬂ?lz . 4];0251 ezii?ox + ’?1231 eﬂ?lz + ,;1251621'1?0} _ _% ezn&,x’
or
(k2 — 4k¢ )G e¥ho7 = —% ¢ 2iko¥ (2.5.3)

20



Equating coefficients in Equation (2.5.3) gives

(kf —42)C = 2 .
or, using the definitions of k¢ and &, we have k> — 4k{ = —2iw . Then
—2iw C, = —% ,
which gives C, = 4% = —%, and so
‘71(}) _ Kleil?lx ;eZil?of,

or

|~

ﬁmJ)zéfA_gFﬁwzo. (2.5.4)
Equating coefficients in Equation (2.5.4) gives
A-i=0,
Thus, A = ﬁ, and so
. \2 _ _ _ _
P(%T) = [%] % [ei(klezaz) _ pilke®—2iaT) ] (2.5.5)



Figure 2 shows the plot of |ﬁ | versus position for several values of frequency. Here we
see that |ﬁ | is strictly less than 1 for all X, achieves a unique maximum and decays to zero as

, Xmax » Shifts to the left as the frequency

X — oo. Furthermore, the location of the peak of |ﬁ

increases and to the right as frequency decreases. In Chapter 5, we investigate the relationship of

Xmax to frequency. Particular attention is paid to the limits of low and high frequencies and

approximations to X,,,, are developed in these regions.
1P

-:-.-33-:-f

0025

:-51:- f

0.015

0.010 5

0.005 [

Figure 2. |551 | versus x for w = 0.1 (solid), 0.25 (short-dashed), 0.5 (dotted), 1.0 (dot-dashed) and 10.0
(long-dashed).
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2.5 The Second-Order Correction

Substituting Equation (2.3.8) (with n = 2) into Equation (2.3.7) gives

Zlinm e |+ Zlinm e |- Ll e
= S T(F)e T S T(E) e W | LR (R WL (7) e
or
L e T 4 D) v |- L L) e
ot 2 0t 2 Ox

or
—(9&* +3iw Ve T~V e T = —=(3iw)V, -V

or, letting k? = 9% + 3iw,

V) + 12V, = —%VO V. 2.6.1)

4

Thus

30z o\ Tooy 30 0 ikE( ik ik 3 [ i(ktk)E s
_TVO(X) Vl(x)__j'ze (el e 0) ?[ — e
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Then, Equation (2.6.1) becomes
7+ k27, = _3%" oilRoth)E _ 3k (2.6.2)

The general solution of Equation (2.6.2) is

Once again, we must have B, = 0. Then

V(%)= A, ™" 4 C, Rtk )iy b, o3ikox (2.6.3)

Differentiating Equation (2.6.3) twice with respect to x gives

VZ” ( f) = _]?22 Zz eil?ﬁ _ (]?0 + ]?1 )2 C, ei(l;o-&-kl)}_ 9]?02 52 6’3”;0}.

Moreover

Therefore

V) + K2V, = [1:22 — (ko + Ky ) }cz o th Ty (B2 — 9k )Dy 7. (2.6.4)

Combining Equation (2.6.2) and Equation (2.6.4) gives

[1?22 _ (]?0 s )2 }52 o lkotki)F (];22 — 9k, )52 o dikoT
(2.6.5)

3i°_dei(l?o+/?1)f 3iw o 3iko¥
8 8

24



Then, equating exponentials in Equation (2.6.5) , we have

(2.6.6)

or, since k7 — 9kj = 9@ + 3iw — 9(&” + iw ) = —6iiw and

- (R + B = B2 - (5 + B+ 2 )

= 9&” + 3ilo — (@* + i + 4 + 2il + 2Ky - k)
= 9% + 3ils — (507 + 3l + 2Ky - ky )

:4(,_02—2]?0]?1 N

Equations (2.6.6) become

2(25° —Fy 11 )€y = _3%"
) (2.6.7)
— = 3i

—6ivDy) = —

| gj

Solving (2.6.7) for C, and D, gives

(2.6.8)
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Then, Equation (2.6.3) becomes

= = ik,* 3iw i(ko+k)x 1 sikr
v = A, e*¥ _ __ ik - — et
Z(X) 2 16(26_02—](0](1) 16
and so
B(7.T)=L| A, 0T - W iRk L it e g 69)
’ 2 16( 2% — ko - Ky ) 16

- i 3i 1| sz
P(0,1)=5 A — _—— e ¥ =0
2H0.T) =7 |4 16(26% — ko k) 16
Then
- 3i 1
A - — =~ T, — s
P 16(25% —k k) 16
or
L, 3iw 20" —ky k43I0
2716 16(20% —ko - ky ) 16(20% — ko ky )
Thus
_ _ . -2 T L — \— A Ea Tz 1 _ L
e o o e S KT i e LA Tl (Rt
0" K1 w 0" %1
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or

35t [~h=2 T T o . P o
B(x.T)= -4 M R S R — AV
24 | 4k K —20%) 4(20° — ko Ky ) 4
or
. \3 o o
g(f, ?) _ [%] % {Zzl el(k2x_3Wt) + leel[(k0+kl)x—3wt }+e31(k0x—wt )} ’ (2.6.10)
where
_2 o 3 X 3 —_
_2, _ Zw_ Iio k, —|_—23lw 2.6.11)
ko -k — 20
and
B, = L“"_z (2.6.12)
ko -k — 20

Figure 3 shows the plot of |SD_2 | versus position for several values of frequency. As with

the plot of |ﬁ

, we see that |SD_2| is strictly less than 1 for all X, achieves a unique maximum

and decays to zero as X — oco. Furthermore, the location of the peak of |SD_2

, behaves as it did

for |ﬁ | frequency increases and to the right as frequency decreases.
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0.003 |
0.002 f

0.001 [ ?

Figure 3. |SD_2 | versus x for «w = 0.1 (solid), 0.25 (short-dashed), 0.5 (dotted), 1.0 (dot-dashed) and 10.0
(long-dashed).
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Chapter 3. Dispersion Relations and Phase Speeds

3.1 Overview

In this chapter, we derive expressions for the dispersion relations &, (&) and the phase
speeds Vi, , (@ ). Since k, € C, we must first determine the real part @, and imaginary part

B, of k,. The limits of low and high frequencies are also investigated for both k, and Vph,n -

3.2 Dispersion Relations

Real and Imaginary Parts

By inspection, we see that, for n = 0, 1, 2,

K2(D)=(n+1) &> +(n+1)id. (3.2.1)

We now express k,, in standard form. Let &, > 0 and 3, > O be the real and imaginary parts

of l;n , respectively. Then

(n+1)2 3%+ (n+1)iz = (a, +iB,) =at— B +2ia,B,

Equating real and imaginary parts gives the 2 x 2 system of equations

(n+1)"@>=a’-pj?
(3.2.2)
(n+l)w=2a,0,
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The second equation in (3.2.2) gives

= (n+1)w
Fu = 2a,,

Substituting Equation (3.2.3) into the first equation in (3.2.2) gives

or

which is quadratic in &nz. From the Quadratic Formula, we have

2 _ A1) T 160+ 1) T 4 16(n +1) &

n 8 s

where the positive root is taken since &, € R, or

—a_ (n+12 +(n+1) T+ (n+1)7 &

" 2

Thus, the real parts of the dispersion relations are given by

_ _\/(n-l—l)zojz-l—\/(n+1)4<,_u4+(n-|—1)2<,_02
n — 2 )

where the positive root is selected. Then, factoring out /(n +1) /2 gives

&n(cﬂ):JW-\/\/(rzﬁ-l)zcﬂz-I—l-l—(n-i—l)u_J.

30
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From Equation (3.2.3), 3, is then given by

(n+1)w
G ___2 1
\/("+21)°_“ Wn+12 3 41+ (n+1)3

b

or

Bn(@):xfW'\/\/(n-l—l)z&z-I—l—(n-i—l)@. (3.2.5)

The (a) real part and (b) imaginary part of the dispersion relation are shown plotted
against frequency for several modes in Figure 4. Here, we see that &, increases with increasing
frequency. For large values of &, @, appears to vary in, roughly, direct proportion with

frequency. Moreover, this proportionality factor increases as n increases. However, the behavior

of 3, is quite different. We see that, for low frequencies, 3, increases with frequency,

approaching the constant 1/2. Note that as n increases, (3, approaches this upper bound more

rapidly. From [9], we see that for small frequencies, the medium assumes a diffusive-like nature.
However, for large frequencies, the medium behaves similar to one exhibiting relaxation [27]. It
is in this region we are most concerned, since combustion can only be sustained if energy
propagates through the system. For mid-range frequencies, the behavior can be either diffusive

or propagative.
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Figure 4 The (a) real part, o, , and (b) imaginary part &, of the dispersion relations plotted versus
frequency for n = 0 (solid), » = 1 (dotted) and n = 2 (dashed).
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Low-Frequency Regime

AsT =0, \(n+1) @2 +1+(n+1)@ — 1. Thus, for & < 1,

a, (o)~ S22 (3.2.6)

Bu(@) & 4| ————. (3.2.7)

Thus, for small frequencies, &, and 3, are approximately proportional to Vo,

indicating diffusive effects [8]. That is, the energy due to the harmonic boundary condition is not

enough for propagating pressure waves to develop. Figure 5 shows plots of (a) @, and (b)
3, versus @ for several modes in the low-frequency regime compared with the low-frquency

limits given by Equation. Here, the ¥& -type behavior of @, and (3, is readily seen.
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0.006 0.008 0.010

(b)

Figure 5. The (a) real part, o, and (b) imaginary part &, , of the dispersion relations plotted versus

frequency in the low-frequency region for n = 0 (solid), n = 1 (dashed) and n = 2 (small dotted). Dots
correspond to the analytic solution given by Equations (3.2.8) and (3.2.9).

34



High-Frequency regime
Consider the following identity

\/\/(”+1)2@2+1+(n+1)c_u:4/(n+1)@-\/\/1+;+1.

(n+1)2 nk

Thus, for fixed n, we have, for large @, using the binomial approximation,

1
a,(W)~(n+1)o- |1+ ——F5—/|. (3.2.8)
(@)~ ) 8(n+1)* a2
Similarly, for large &,
— 1 1
B (o)~=-|[1l———m——1. (3.2.9)
(@)=3 8(n+1)> &>

Thus, for large & , @, is in direct proportion to the frequency, indicating propagative
effects. That is, the energy due to the harmonic boundary condition is large enough for pressure

waves to propagate through the gas. [3,,, on the other hand, approaches the constant value of %
from below as w increases without bound. Figure 6 shows plots of (a) @, and (b) in the high-

frequency region. Here, the linear behavior of frequency is verified for @, and 3, ~ 1/2.
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.. » and (b) imaginary part Bn , of the dispersion relations plotted versus

frequency in the high-frequency region for n» = 0 (solid), n = 1 (dashed) and n = 2 (small dotted). Dots
correspond to the analytic solution given by Equations (3.2.10) and (3.2.11).

(b)
Figure 6. The (a) real part, o
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3.3 Phase Speeds

The (non-dimensional) phase speed of the pressure wave is defined as

w

k(&)

Vphm(c_u) —

b

where the modulus of &, has been used since k, € C. We have |k, | =

@2:M-[\/(n+l)2fuz+l+(n+l)@}

an_(”+21)°7-[\/(n+1)2@2+1—(n+1)@}
Then
l?,lz—("+21)°U-[\/(n+1)2@2+1+(n+1)5}
+W-[\/(n+1)2@2+1—(n+1)5],
Enzz(n+21) 2\/(n+1) w+1
Taking square roots gives
ky :\/(n-i-l) -\/(n-i-l) w41

Thus,

n+1

Vph,n("_d): 2 ’\'
\/(n+1)c_u-\/(n+1 w?+1 n+l \/\/

37
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(3.3.1)
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Figure 7 shows plots of the phase speeds as functions of the frequency for several modes.
Here, we can see that the phase speed increases rapidly with @ for small frequencies but begins
to "flatten out" as w increases approaching a positive constant. This constant is different for

each wavenumber with a maximum of 1.0 for » = 0 and decreasing for increasing » .

Ve, n
1.0F

0.8

0.4

Figure 7. The phase speeds plotted against frequency for n = 0 (solid), 1 (dotted) and 2 (dashed).

Low-Frequency Region

Using the low and high frequency approximations for @ and B given by Equation and
Equation, respectively, we have

> (n+Do  (n+1)o
T2 2

|En =(n+1)w.
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Then |En ~ y/(n+ 1) and so the low frequency approximation for the phase speeds

are given by

_ © 5
vph,n(w)w\/(nﬂ)c_u: — (3.3.4)

Figure 3 shows a comparison of the phase speed in the low-frequency region with the

approximation given by Equation (3.3.4).

0.04

0.02

0.002 0.004 0.006 0.008 0.010

Figure 8. The phase speeds plotted against frequency for n = 0 (solid), 1 (small dotted) and 2 (dashed) in the
low-frequency region. Note that agreement with corresponding analytic solution given by Equation (3.3.5).
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High-Frequency Region

Using the low and high frequency approximations for & and B given by Equation and

Equation, respectively, we have

Al

2 z(n+1)2<,—uz+

n

or, for v > 1,

k[

z(n+1)2<32.

Then, for high frequencies, |k,

~ (n+ 1) w and so the high frequency approximation for the

phase speeds are given by

_ 5] 1
vph,n(w)~(n+1)@—n+1. (3.3.5)

Figure 4 shows a comparison of the phase speed in the low-frequency region with the

approximation given by Equation (3.3.5).
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Figure 9. The phase speeds plotted against frequency for n = 0 (solid), 1 (dashed) and 2 (dotted) in the high-
frequency region. Note that agreement with corresponding analytic solution given by Equation (3.3.6).
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Chapter 4. Determining the Peak of the First-Order Correction

Term and Constraints on the Perturbation Parameter

4.1 Overview

In this Chapter, we first investigate the behavior of the modulus of the first-order

correction |SD_1 | . From Figure 2, we see that |SD_1 | is bounded and has a unique maximum, which
we denote by X, - Thus, we study the behavior of X, in terms of frequency. Next, we

determine bounds on the perturbation parameter ¢ that ensures convergence of the solution P .

4.2 Maximizing the Modulus of the First-Order Correction

Here, we seek the value of 7 for which |#

is a maximum. Let z_,_ denote this quantity.

From Equation (2.5.5) the first-order approximation is given by

. 6,3@ .ei(@lffmﬁf) B 87230;2 _821'((10.%7(4)15) (4.2.1)

where the wavenumbers have been expressed in terms of their real and imaginary parts ¢, and

(3, . The square of the modulus is given by ‘7)_1‘ = |P* - P, . Conjugating Equation (4.2.1) gives

P (T8 = g7 e B 2 R et (4.2.2)
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Then

‘7)_1 2 :é_[eﬁlz —imz  —2ByT 2za0z]_[eﬁlz Qi _ 267 2za0z]

or
‘ﬁlr _ 61_4 2T | ARy _67([“260)5_6 —i(ay—2a, )z _67(61+2BU)5_6¢(@72@U)5

or

‘ﬂ 64

—‘2 _ 1 {ewlz 44T _ e*(61+260)f_ .

Now, using the identity cosz = %(em + eiiz) , Equation (4.2.3) becomes

‘7)_1‘2 _ l [672515 " 674505 B 67(/?1+2/§0)f

64
7(31+230)f

Factoring e

67(61+2BU)5

Al =

from Equation (4.2.4) gives

_F(&2%ﬁ+4@2%ﬁ

— 2008(0_41 —Q&O)f

Cos(a1 —2q )f} .

Now, using the identity coshx = %(ez +e ), Equation (4.2.5) becomes

—(B+28 |z
‘7)_1‘2 _e ( - 0)

43

-[2 COSh(Bl — 250):?— 2 COS(O_zl — 2540):5} .

Y

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)



Thus, the modulus of the first-order correction becomes

B2k o

‘Pl‘ NI \/

cosh Qﬁo )x — COS( —2a ) 4.2.7)

To find the location of the peak of ‘?_1 ‘ with respect to x .

The peak of | P |, is a zero of d| P | /dx . From Equation (4.2.7) we
have
d‘ﬁ‘ 8,%’5 _ ——  4sinhAdZ + Asin AT
— = — | 6,Jcoshy T —cosAT — —|. (4.2.8)
dz 82 \/ \/coshif—cos)\_

where § = 51 + 250 , Y= Bl - 250 and \ = 0y — 20 . In order for Equation (4.2.8) to vanish,
we must have

] — 5sinh 77+ AsinAz
@/cosh*?:f—cos)uf—fysm R SmX_xZO,

\/costh:f — COoS

or

6 coshyZ — Fsinh7Z= 6 cosAT + Asin \ Z. (4.2.9)

The LHS of Equation (4.2.9) can be written as
6 coshAZ — Jsinh 4z = C, cosh(*?:f — Eq) = () cosh ;- cosh7Z — C; sinh & sinh ¥Z.

Then, we must have

(4.2.10)
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Dividing the second equation in (4.2.10) by the first gives

= tanhF, . 4.2.11)

>

Moreover, subtracting the square of the second equation in (4.2.10) from the square of the first

gives

62 — 7% = C}(cosh? K — sinh? & ), (4.2.12)

Thus, from Equations (4.2.11) and (4.2.12), and using the identity cosh? z —sinh?z =1, we

have

%, = tanh~ 1L
0 (4.2.13)
C =67 -7
Similarly, the RHS of Equation (4.2.9) can be written as
ASInAZ + 6 cos AT = C, COS(X:E — /?;2) = (5 c08Rycos AT + C,y sin iy Sin AZ.
Then, we must have
A = C,sink,
L (4.2.14)
0 = C,Ccosk,
Dividing the first equation in (4.2.14) by the second gives
by _
5 = tanw, . (4.2.15)
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Moreover, adding the square of the first equation in (4.2.14) to the square of the second

gives

X? + 6% = C3(sin? R, + cos’ R, ). (4.2.16)

Thus, from Equations (4.2.15) and (4.2.16), and using the identity sin®z + cos?z = 1, we have

_ A
Ky = tan =
o . (4.2.17)
C =X +0o°
Thus, Equation (4.2.9) can be written as
Cycosh(3Z — iy )= Cycos(AT — R, ) , (4.2.18)

where %, C,, R, and C, are given by Equations (4.2.13) and (4.2.17). Finally, letting

C = C,/C, , Equation (4.2.18) becomes
cosh (T, — Ry )= Ccos(37,,, —7,) - (4.2.19)

Low-Frequency Region

From Chapter 3, we have, for the low-frequency regime,

~ 73 _ ¥
% = o (2 (4.2.20)

a = p, =vo
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Then 6§ , 7 and ), become

5 =B+ 20 =5 +2 g—[u%]r@:m@)r@
53 —23, -G -2 E_[li]ﬁ_(lﬁ)ﬁ , 4.2.21)
2 2

respectively. Thus, letting y = ( 1—+2 )\/5 X , we have, from Equation (4.2.9),

(1+V2)coshy — (1—+2)sinhy = (1—-v2)siny + (1 + V2 )cosy  (4.2.22)

The solutions of Equation (6.1.1) are given in Table 1 for some small frequencies w as well as

the product V@ X, . Note that for decreasing frequency, the product ~/@ X, converges to the

value 2( J2 - 1) ~ (0.828. Thus, for small frequencies, we have

_ 0.828
Xax ~ 7= (4.2.23)
w fmax \/afmax

0.0001 82.8551857057 | 0.8285518571
0.0002 58.5917705348 | 0.8286127653
0.0003 47.8434971211 | 0.8286736783
0.0004 41.4367297906 | 0.8287345958
0.0005 37.0648623540 | 0.8287955180
0.0006 33.8379226641 | 0.8288564448
0.0007 31.3301319297 | 0.8289173763
0.0008 29.3088093070 | 0.8289783124
0.0009 27.6346417700 | 0.8290392531
0.001 26.2184503560 | 0.8291001984

Table 1. The product NG X..x for various values of w and the corresponding values of X in the low-

frequency region.
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High-Frequency Region
From Chapter 3, we have, for the low-frequency regime,

0_40 =w
& =2 (4.2.24)
3 pu— 3 p— l
0 1= 5
Then 6 , 7y and ), become
s 3 1 1 1 3
pu— = — —_— = — 1 = —
1) 1+ Qﬂo 5 + 2 5 5 + 5
= = 1 1 1 1
¥=6-28=2-2>==—-1=—-= 4.2.2
¥ =B — 26 5 2 5= 3 1 5 ( 5)
¥ =a; —20) =202 =
respectively. Thus, Equation (4.2.9) becomes
3 z 1. ) 3
= = |+= -=|==. 4.2.2
cosh 5 + 2Slnh 5 5 ( 6)

Exploiting the parity of the hyperbolic cosine and sine functions and multiplying by 2, Equation

(4.2.26) can be written
(4.2.27)

3coshZ — sinh%: 3.

1 (ex +e " )and sinhx = %( et —e " ), Equation (4.2.27)

Using the identities cosh x = >

becomes
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or, multiplying 2e:2 and expanding,

2e" + 4= Ge: ,

or, re-writing

e" — 3¢t +2=0.

From the Quadratic Formula, we find

DO| i

=2. (4.2.28)

[Nl

A3 +¥9-4-2 3+V9-8_ 3441 _
2 2 2

Taking the natural logarithm of Equation (4.2.28) gives

=1n2.

OIS

Thus, in the high-frequency region, the location of the peak of ‘@I ‘ is given by

(4.2.29)

A plot of X,,,x versus frequency is shown in Figure 10. The limiting values in the low and high-

frequency limits are shown as dashed lines.
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Figure 10. The response of location of the peak of the modulus of the first-order correction to frequency. The
low-frequency limit 2 ( V2 -1 ) / V@ is shown as a blue dashed line and the high-frequency limit2 In 2 is

shown as a red dashed line.

4.3 Determining the Constraints on the Perturbation Parameter

Here, we wish to examine the constraints on the perturbation parameter ¢ ; that is, we

seek the values of ¢ so as

1|, we have,
from the Triangle Inequality,

P>

St EAEA
Pl<t|Py |14+ 4 21221
| |—| 0| € 0| € |5D0|

|P

Thus, we wish to satisfy the following two inequalities:

]

|<<1

0\3

=K

;5| ‘el
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where |SD_0 |, |SD_1| and |SD_2| are all evaluated at X, . Thus, letting 7 < 1 denote some pre-

determined tolerance, for example 7 = 0.1, we have

(@)

3 |‘£®|
I
\]

(4.3.1)

™
I
\]

=

The plots of ln(|50_1|/|7)_0|) and ln(|50_2|/|7%|) versus Inw are shown in Figure 11.

From these plots, we can see that these ratios remain bounded at all frequencies. For example,

for a tolerance 7 = 0.1,

(4.3.2)
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Figure 12. A log-log plot of the ratio of (a) | P_l | / | P_O | and (b) | P_z | / | P_O | to versus frequency. Taken

together, these two plots, define the range over which £ may vary so that convergence of P will occur. We
seek an maximum value of € that satisfies both convergence conditions.
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We must choose a value of ¢ that satisfies both equations in (4.3.2). Letting
M, €{|P|/|R|}and M, €{|P,|/|Py|}. Then, we find using Figure 11, that the bounds on M,

—4.159

and M, are e >3 < M; < e >® and e * < M, < e , respectively. This results in the

corresponding bounds on £: 0.8 < ¢ < 1.25and 0.8 < ¢ < 0.957, for M, and M,,
respectively. Next we need to choose a value of epsilon from these bounds that satisfies both

inequalities. A choice of € < g, , Where ., = 0.8 satisfies both inequalities in the low and

high-frequency regions.
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Chapter S. Details of Perturbation Solution

5.1 Overview

In this chapter, we derive formulas for the low and high-frequency limits of Py, P, and

P,. We then compare these approximations with the solution obtained in Chapter 2 in Figures 8

and 9. The dots in the figures denote the approximations obtained in Sections 5.2-5.4.

5.2 Zeroth-Order Term

Using Equation (2.4.2) the zeroth-order solution }_70 is

b

Po(%7) =3 o (@i Ji=ot] oo

or
Py(X,7)= % ¢ T (@TT) L gl
or
By (%.7) = % eﬁoxei(aoxwt)_% o DT i (a-3T)
or
ﬁo(y,?) _ B ¢ qgxX—wt ) ezfox —i (Qx—t )
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Thus

Py (%,7) = — ¢ P sin(@ox — &7 ) . 5.2.1)

5.3 The First-Order Correction

Using Equation (2.5.5) the first-order correction P, is

or
iV L[ i(F-2ar) 2ilRe-or)
ﬁ—,? . _[llewt - i kox —wt c.,
(5 7) =[] 5 Feo
or
i\ L[ -G pitam25T) o, 2i( @)
5w 7y | L] L[ B iax—2wr —2F)% ,2i( @gx T
Pl(x,t)—[z] 2[(3 et e Sx e +c.c.,
or
—Bix _ _ ~206)% _ _
B(%7)=-¢ 81 Qi(@F—28T) | ,—il@F—207)|_ € 80 Q2T -TT) 4 ,~2ila®-aT) |
or
_ 1 _ o _ I
P(x,1)= 1 [e’[’)'x cos( X — 2t ) — e 2% cos2(@yx — Wt )} (5.3.1)
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5.4 The Second-Order Correction

Using Equation (2.6.10) the second-order correction P, is

FQ()T, ?) _ [ [ZZI pika¥ =351 + EZI ez(k0+kl)}—3@_‘_63,'1(0}735? tec. .

where A,’ and B, are given by Equation (2.6.11) and Equation (2.6.12), respectively. Then

2P (%, 1) = _i{zzl pilBaX=35T) B,/ pil (Rotk JT=3a7 ] _ il Kov— 7 )}

or

or

32“32()7’ ?) _ Zzl 675’2} ei(&2}735t7) n Ezl 67(50+Bl)f ei[(aﬁ&l)ﬁwﬂ
+ef3f)’0} eSi(&of—&?) . Zzl* e*f”zf e*i(@zf*35?) (5.4.1)

_B, ef(f)’o+[77’l )x efi[(&0+&l)}f35?]_ o 300X ,—3i(GX T )

b
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D/

Since A, By’ € C, we write A’ = ReA,’ +iImA, and B,/ = ReB,’ +iImB, .

Then, A" = Re A, —iIlmA,) and B,”” = ReB,’ —iImB,’, and Equation (5.4.1) can be

written as
RNiB(XT)= (Reng +iTm A, ),Bzxe«mfz@;)
+(RCEZI —+ lIm )e ﬁ0+ﬁl ’ (‘YO‘H)&])X 3wt]
(ReA2 —lImZZ’)e 2 X 2 X337
—(RCEZI —lIl’Il )e ﬁ0+ﬁ1 71[ ao+al)x 3wt]
+e*3ﬁof e3i(&0}7@7) . 87360} 673,'(&0},@7) ,
or

32iP (X, 1) =Rede P '(“2}*35?)_e*i(&ﬁs&?)}

B, %

+ilmA) e (@2 %30T ) + o (@ X—30T) }

-I-ReEz/ef(BﬁBl)} {ei[(&"w‘)}*wﬂ—e*i[(&owl)f%&?] }
+iIlmB,’ o (BotD )7 {ei[(&o+&1)f73ﬁf]+ e*"[(@ﬁal)f*m?]}

+e*350§e3i(&0}75?) _ 673602673,'(&0;7@?)

b
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or

_ _ ., 3 ei(agﬁ@?)_ —i(@,x—3wr )
32P, (X, 7) = 2Re A ¢ 27 >
1
_ _ | ila,x-337) —i(a,x-3r)
12Im A, e PF | € +2€

_ — [ illayta,)x=3wr | —i[(@,+a, )x-3wt |
+2Releef(ﬁ°+ﬁl)x {e 2.€
I

_ — — [ il(ay+a )x-3wr ] —i[(@o+a, )X 301 |
+2ImB,’ ¢\ Pothi)x {e te

2

o AT—GT) _ ,—3i( @px a7 )

) —36,%
+2e 57

or
16P, (%, 1) :ReZQ'e*Bﬁsin(az)?— 3ot ) FImA) e 727 cos( @, X — 3wt )
+Re By e P sin| (@, + @, ) ¥ — 357 |
+Im B, ¢ I cos[ (@ + @, )X — 37 |

+ei3ﬁ"}sin3(&of — ot ).
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Thus

- e*ﬁzf
Pz(x,t): 16

Re A, sin(@,¥ — 301 ) +Im A, cos( @, X — 307 ) }
e*(60+61)f —, _
+——¢— Reb sin[ (& + @ )X — 3071 |

(5.4.2)
M Im B 'cos[(& +a )f—3c_u?]
16 2 0 1
67360} B
T sin3( apx — Wt ) .

_|_

_|_

5.5 Low-Frequency Limiting Behavior

In the low-frequency region, we have from Equation (3.2.6) and Equation (3.2.7),

s (5.5.1)

5w 2%
| ==+ | = =25, 5.5.2
NG 2] T B9
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Then, from Equations (2.6.11) and (2.6.12), we have

45> —(3-+2)V2

ReA, — —
: 452 +2
_ = ’ (5.5.3)
ImA2 = —_S—w
40”4+ 2
and
ReEzl = —ii
40 + 2
_, = 5.5.4)
Im32 = _S—w (
40° + 2

Expanding P into its real and imaginary parts, adding it to its complex conjugate and
simplifying, the low-frequency approximation is given by P = Py'F + e P*" + 2 PM' | where

the terms ByM', e*" and 2P)"" are given by

PLF(:E,E)——G“/%ESHQ %x—@f (5.5.5)
ePM (x,7) = —Z[e’ﬁ}cos(x/c_uf— 201 ) — eV cos (V20X — 2&7)}
2
= — &2 A+BAC
P = 5.5.6
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where

30 ~

+ 6 W cos 7f—3wt

A= [4@2—(3—&)@sin

4/3763%—3@?

B =[—6i cos(sX — 3wt ) + 3v2 sin( s¥ — 3wt )]e ™"

\/gf o7 ] 673\/§}

C=—(4w>+2)sin|3

b

and

-
Ny

€l

S

]e

3w
2" (55.7)
(5.5.8)
(5.5.9)
(5.5.10)

Figure 8 shows a comparison between the perturbation solution P = # + c.c. and the

corresponding low-frequency approximation. From this figure, it is clear that the approximation

is in excellent agreement with the corresponding perturbation solution in the low-frequency

region.
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Figure 8. A comparison of the low-frequency w = 0.01 perturbation solution P = # + c.c. with the low-
frequency approximation P** forc = 0.4. Pis shown as a solid curve and the points are obtained from P .
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5.6 High-Frequency Limiting Behavior

In the high-frequency region, we have from Equation (3.2.8) and Equation (3.2.9),

@, () =(n+1)o (5.6.1)
and
- [ — 1
Bn(w) =2, (5.6.2)
which gives 540(5;) =w, o (c_u) = 2w, ﬁo(u_;) = ﬁl(@) :% and

2 s (5.6.3)

Then, from Equations (2.6.11) and (2.6.12), we have

_2@2+i
Red, = —— 416
4% 16
(5.6.4)
3
ImZzl :—9 j 1
4 16
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and

9

_ 7(/‘)
ReBzz—g_zz :
4 16
3.0

Im1§2/:9 j 1
¥ 16

(5.6.5)

In the high-frequency region, using the high-frequency approximations for @, and £, ,

Equations (4.3.1), expanding P into its real and imaginary parts, adding it to its complex

conjugate and simplifying, the high-frequency approximation is given by

PP = BT + e BHF 4 2 BT where the terms Py, e B," and &2P,"'" are given by

2 -
2P HF (= 7\ _ & 1 -3 — (= 7
e*P. (x,t)—ﬁ-i_l_nge 2[Dcos3w(x —1t
1674
where
z
D=-35435¢2
4 4

1 9_2 9_2 _X 1

E=———= R 2 i
l16 4 | 72v ¢ +l16+

64

)+ Esin3w(x —1 )],

(5.6.6)

(5.6.7)

(5.6.8)

(5.6.9)

(5.6.10)



Figure 9 shows a comparison between the perturbation solution P = # + c.c. and the
corresponding high-frequency approximation.. Again, we see that the approximation is in

excellent agreement with the corresponding perturbation solution in the high-frequency regions.

0.5

-0.5

-1.09

Figure 9. A comparison of the high-frequency @ = 107 perturbation solution P = £ + c.c. with the high-
frequency approximation P*" forc = 0.4. Pis shown as a solid curve and the points are obtained from P* .
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Chapter 6. Comparison of the Perturbation Solution with the Finite-

Difference Solution

6.1 Overview

In Chapter 2, the solution P of BVP was found using the perturbation method and in

Chapter 4, convergence of the solution was verified by determining a value of the perturbation

parameter, & such that P remained bounded. However, P as determined is only valid after

max >
enough time has passed for the transient effects to die down. We shall now compare P with the
solution of the non-dimensional form of BVP (1.7.1) as obtained using a nonstandard finite-
difference scheme [19], which we denote by p. Since p is valid for all times, we shall seek a
time T large enough for any transient effects to become negligible. Then for t > T, p~ P.
To determine p, we will use the explicit scheme as outlined by Jordan and Mickens in

[19]. Here, the continuous variables T and ¢ are replaced by discrete sets of equally spaced

points 7,, and {;, , where 7,, = mAZTand ¢, = kAt , respectively, where m and k are

nonnegative integers. The corresponding pressure will then be denoted by ]3,5 . The derivatives

are then discretized as follows:

p Rl 6.1.1)

Y

where, R = At_/ AZ . To ensure proper convergence, we must have R < 1. This is satisfied in

[19] by taking AZ = 2At . We will use the same R ; however, we shall seek an optimum mesh

size by varying the total number of nodal points over one quarter of a wavelength.
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Since the finite-difference scheme involves a boundary at some point 0 < L < oo, the effect
of the presence of this boundary must be taken into consideration when comparing the two
solution methods. We note that since the units are non-dimensional and the speed of the wave is
normalized to unity, the spatial and temporal variables are equivalent. Thus, finding the time T
at which the approximations are close is equivalent to finding a position L for the right

boundary such that reflection from the boundary becomes negligible.

6.2 Demonstrating the Convergence of the Finite-Difference Scheme Over One
Quarter-Wavelength

We shall now determine an optimal mesh size for the finite-difference scheme.
Specifically, we will solve Equation (xmaxequation) over one quarter of a wavelength for

increasingly smaller values of A¢ until convergence occurs to the third decimal place. Table 2

gives the values of p(i — A7, T)for several values of A7 'and the corresponding values of

Az L.
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AT Az p(L—AzT)

625 312.5 0.105945262321074
1250 625 0.0349286893647188
2500 1250 0.0170705086266031
3000 1500 0.0141534335150195
3500 1750 0.0120916075568926

3775 1887.5 0.0111914850660859
3780 1890 0.0111770506623238

Table 2. Illustrating the Convergence of One Quarter-Wavelength of the Finite-Difference Approximation p

by Computing 7 at One Spatial Increment Before the Boundary at L for Decreasing Mesh Sizes. Here,
w=10rand ¢ = 0.4.

Here, it is evident that p(l_; — AT, T) 0 as AT — 0 (or, AT ! — 00).

6.3 Determining the Position of the Right Boundary such that the Perturbation

Solution Decays to 10%

In this section, we shall determine a value of L such that the amplitude of P decays in

amplitude to 10% of its value at source of the disturbance. To do this, we will compute P one

quarter-wavelength to the left of the right boundary at L . ]3(1_} — )\/ 4, T) for boundaries placed

at several odd multiples of quarter wavelengths are given in Table 3.
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L=T|L—N4| B(L-N4,T)
0.15 0.1 0.9558962911
0.25 0.2 0.9135396006
0.35 0.3 0.8728775809
4.55 4.5 0.1156853701
4.65 4.6 0.1101040369
4.75 4.7 0.1047891584
4.85 4.8 0.0997282801
4.95 4.9 | 0.09490950482
5.15 5.1 0.0859533238
5.35 5.3 | 0.07783573618
5.55 5.5 | 0.07047940385

Table 3. Determining the location at which the amplitude of P decays to 10% of its value at the signal in the
high-frequency region. Here, v = 107rand ¢ = 0.4.

In Table 3, the location at which the amplitude of the perturbation solution decays to ten
percent is shown in bold face. This corresponds to ninety-seven quarter-wavelengths. For the

computation of the data, w =10mand € = 0.4.

6.4 Using the Finite-Difference Solution to Establish the Validity of the
Perturbation Solution

Here we wish to establish the validity of the perturbation solution P . To do this, we
shall compare P with the finite-difference solution p , whose convergence is demonstrated over

one quarter-wavelength in Section 6.2. Due to the presence of a right boundary L in the finite-
difference and the corresponding boundary condition at L ; namely, the pressure must vanish at

L.
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Since we are most concerned with the high-frequency regime, we choose a frequency
w = 107, which satisfies this condition. Furthermore, for the perturbation solution, we shall

take the perturbation parameter to be ¢ = 0.4 < ¢

nax determined in Chapter 4. For the chosen

frequency, we choose L = 97)\/ 4, where )\ is the wavelength of the pressure wave. This

location is chosen so that the condition that the amplitude of the signal drops to 10% of its value
at T = 0. The finite-difference solution is then computed for this L .

The evolution of this solution is then compared with the evolution of the perturbation
solution for times ¢ such that the signal has reached one, five, seventeen and thirty-five quarter-
wavelengths and is shown in Figure 10. Figure 11 shows the evolution of the perturbation
solution for ninety-seven quartet-wavelengths. In each of these figures, it is readily seen that the
two solutions are in excellent agreement. Figure 11 is repeated in Figure 12, with the linear part
of the perturbation, P, superimposed on the plot for positions to the right of L. Here, we see

that when the solution is evolved to the point where the signal amplitude drops to 10% , the

perturbation solution P may be replaced with P .

70



Pressure
1.0

0.5¢

0.01 0.02

-0.5¢

_10 L
(a)

Pressure
1.0

05¢

0.03

0.04

0.05

0.2

-05¢+

—-1.0t

©

=1

Pressure
1.0

‘ ‘ X
0. 0.10 15 0.20 0.25

-0.5¢

—-1.0t

(b)

Pressure
1.0,

05¢

-0.5¢

-1.0

(d)

Figure 10. A comparison of the evolution of the perturbation solution P (solid) with the finite-difference
solution p (dots) for (a) one, (b) five, (c) seventeen, and (d) thirty-five quarter-wavelengths with

& = 107 and ¢ = 0.4. The right boundary L used in the calculation of 7 is located at 97 quarter-

wavelengths.
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Figure 11. A comparison of the evolution of the perturbation solution P (solid) with the finite-difference
solution p (dots) for ninety-seven quarter-wavelengths with .o = 107 and ¢ = 0.4 . The right boundary

L used in the calculation of 5 is located at 97 quarter-wavelengths.

Pressure
1.0

0.5

T

-0.5

-1.0"

Figure 12. Demonstrating the validity of replacing the finite-difference solution p (dots) with the linear part
of the perturbation solution 130 (dots) for ninety-seven quarter-wavelengths with o = 107 and ¢ = 0.4. The
right boundary L used in the calculation of 7 is located at 97 quarter-wavelengths. Note that the

perturbation solution P is shown as a solid line on the left side of L .
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Chapter 7. Closure

7.1 Conclusions

In this dissertation, the perturbation method is used to find the long-time solution,
P =% + cc., to Equation (2.3.2). The dispersion relations are determined and their real and

imaginary parts obtained. Particular attention is paid to the behavior of the dispersion relations in

the low and high frequency regions. The wave speeds are analyzed in a similar manner. Next,

we examine the behavior of the first-order correction term, }_70 , by investigating how the location

of the maximum value of its modulus, 7, , varies in relation to frequency. This is done by

computing its spatial derivative and determining where it vanishes. Exact solutions are found for
the high and low frequency regimes. Numerical results are obtained for frequencies between

these two regimes. A maximum value of the perturbation parameter, & was then determined

max >
which ensures boundedness of the solution. Finally, a numerical solution, p, was obtained using
a non-standard finite-difference scheme. p was compared with P at a time T . Moreover, the
location of the right boundary (Z = L) was determined so that the amplitude of p decays to
10% of its value at the signal location. Furthermore, we show that for this value of L, the

solution can be replaced by the linear part of the perturbation solution }_’U . The results of our

investigations are summarized below.
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1. The moduli ‘SDI ‘ and ‘P; , the moduli of the first and second-order corrections,

respectively, are bounded and decay to zero as T — 0. ‘SDI ‘ and ‘P; ‘ are shown plotted

for several frequencies in Figure 1 and Figure 2, respectively. From these figures, it can

be seen that ‘SDI ‘ and ‘P; ‘ have unique maxima, that shift to the left as the frequency

increases and to the right as the frequency is reduced.

2. The dispersion relations are determined in Chapter 3 (Figures 3a and 3b). Here, we find
that for low frequencies, both the real and imaginary parts of the wavenumber are
approximately equal and proportional to V& , indicating that the medium assumes a
diffusive-like nature in this frequency regime [16]; whereas, for high frequencies, the real
part of the wavenumber is proportional to w, while the imaginary part is approximately
equal to the real constant 0.5, indicating that the medium behaves similarly to one
exhibiting relaxation behavior in this frequency regime [12, 28]. For combustion to be
supported, the medium must behave similarly to one exhibiting relaxation in a given
frequency regime. Thus, we see that combustion is not supported for low frequencies.

3. The phase speeds are determined in Chapter 3 (Figure 4). Here, we find that each mode
of the phase speed is monotonically increasing and bounded, approaching a constant

value in the high-frequency limit. Moreover, we see that for all modes, v}, , <1 for all

w.
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4. In Chapter 4, the location of the peak of ‘50_1

s Tax » 18 first determined from Equation

(4.2.9). Next, the asymptotic behavior is determined analytically and numerically in low

and high frequency limits. 7, ,. is shown to be asymptotic to the curve 2(\/5 — 1) / J& in

the low-frequency limit and to the constant value 2In2 in the high-frequency limit.
Figure 5 shows a plot of T,y versus w. The limiting behavior is shown as dashed
lines.

5. Bounds are obtained on the perturbation parameter € and a maximum value of

IS = 0.81s determined which ensures boundedness of the solution. As shown in

max

Figure 6, this value of ¢ guarantees that both ratios, ln(‘P_l ‘ / ‘SD_O ‘) and ln(‘SD; ‘ / ‘SD_O ‘)

remain much smaller than unity, thereby ensuring convergence of P . Specifically, we

find that ¢ < 0.8 . Thus, for the numerical work, we uses = 0.4, well below the

maximum value €, .

6. In Chapter 5, analytic expressions are obtained for the solutions }_’0, P, and P,.
Approximations for these expressions are then obtained in the limiting cases of low and
high frequency. The total approximate solutions P** and P#F are then compared with
P in the corresponding frequency regimes in Figures 8 and 9, respectively, where the
agreement is seen to be excellent. In these figures, the dots are obtained from the
approximations while the solid line is obtained from the general expression.

7. In Chapter 6, the perturbation method is compared with a positivity and boundedness
preserving non-standard finite-difference scheme [18, 22]. First, convergence of the

finite-difference solution p is established for one quarter wavelength by computing p at
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one spatial-step to the left of the right boundary for several decreasing mesh sizes,

(At, Az) . This is done since the BC demands that p must vanish at the right boundary,

so that the value of p one spatial step to the left must tend to zero as the mesh size

decreases. The results for several mesh sizes are given in Table 2. From these values, it

can be readily seen that ﬁ(f — Az, T ) decreases to zero as the mesh size is reduced.

8. Since the perturbation method is valid only for long times (after transient effects have
dissipated), a position for the right boundary, L , is established such that enough time has
passed for the long-time behavior to become dominant. Specifically, the location of the
right boundary is chosen so that P decays to approximately 10% of its value at the signal
source, as shown in Figure 11. This ensures that reflections from the boundary will be
negligible. The evolution of the finite-difference solution, p, compared to the
perturbation solution, P, is shown in Figure 10 for one quarter-wavelength, five quarter-
wavelengths, seventeen quarter-wavelengths, and thirty-five quarter-wavelengths. Here,

the decay of the amplitude of p as Z approaches L can clearly be seen.

7.2 Limitations

The method described in this paper has some limitations. The solution obtained from the
perturbation method is valid only for long times, after initial transient effects have dissipated;
whereas, the solution obtained from the finite-difference scheme is valid for all times. Thus, the
two solutions can only be legitimately compared for large times. For small times, the comparison

becomes invalid.
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Another limitation is due to the presence of the right boundary in the finite-difference
scheme. In order to avoid any contributions from reflections at the boundary, the boundary must
be taken far from the source. However, this presents a computational challenge due to the large
number of points needed in the finite-difference calculations.

The efficiency of the finite-difference scheme is strongly dependent on the mesh size.
The number of calculations required for a given mesh size may require a large amount of time
allocated to the computation and be impractical.

One way to overcome some of these limitations is illustrated in Figure 11. Here, the

pressure wave is plotted versus 7 at time T = 4.85, over the interval[O, ZE}, where L =T,

w=10mrand ¢ =04 < ¢

max - 1hese values of the parameters are chosen so that the amplitude

of the pressure wave decays to about 10% of its value at the applied signal. To the left of L, the

plot of the finite-difference solution (ﬁ) is shown. However, to the right of L, the plot of the

corresponding linear part }_’0 is shown. From this plot, it can be seen that for points sufficiently

far from the signal, Z > L, the solution can be replaced by the linear part of the pressure wave,

B,.
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7.3 Connections to Other Fields

Equation (1.6.1) can be used to model many phenomena in areas other than gas combustion. In
fact, many of these phenomena occur in fields outside of the physical sciences: for example, in
biology [23] and population genetics [2]. In each case, the physical parameters and constraints
will be specific to the discipline, as well as the interpretation of the solution. We have presented
a non-dimensional form of Equation (1.6.1) for gas combustion in Equation (2.3.2). Thus, the

non-dimensional solution can be obtained and the parameters modified accordingly.
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Appendix A. Mathematica Code for the Finite-Difference
Calculation

Initializations

SetDirectory["C:\ Dissertation Manuscript"];
Off[General::"spelll"]; Off[FindRoot::"cvmit"]; Off[FindRoot::"srect"]; Off{[Power::"infy"];
Off[co::"indet"]; Off[General::"stop"]; Off[FindRoot:: "Istol"];

Off[$RecursionLimit::"reclim"]; Off[Graphics::"gprim"]; Off{(MakeExpression::"boxfmt"];

c = 4
w = 10.
A =2mw;, n =97, L=nX4;, y=-1.; a=1.;dt =1./625; dx =2dt; R = dt/dx;

M = Floor[L/dx+1];
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T = M/4; K = Floor[T/dt+1]; Mprime = N[T/dx]; FinalState = { };
filename = StringJoin[ToString[ T/(/4)],"quarterwavelengths.dat"];
S = Table[0, {t, 0, T, dt}, {x, 0, L, dx}];
Do [S[[k, 11] = N[Sin[(k-1) dt w ]1,{k, 1, K }];
Dol S[[k, m]]

= (R (S[[k-1, m+1]]-2S[[k-1, m]]+S[[k-1, m-1]]) + (2 S[[k-1, m]]- S[[k-2, m]]) - 1/2 y dt (a -
e S[[k-1, m]] )S[[k-2, m]]) / (1-1/2 v dt (& - € S[[k-1, m]] )),

{k, 3, K}, {m, 2, M-1}1;

Do[{y = (m-1)dx; s = S[[K, m]]; FinalState = Join[FinalState, {{y, s}}1},

{m, 1, Mprime+1}];
S =

Export[filename, FinalState];
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T=5)r/4

T = 5X/4; K = Floor[T/dt+1]; Mprime = N[T/dx]; FinalState = {};
filename = StringJoin[ToString[ T/(/4)],"quarterwavelengths.dat"];
S = Table[0, {t, 0, T, dt}, {x, 0, L, dx}];
Do [S[[k, 1]] = N[Sin[(k-1) dt w 1].{k, 1, K }];
Dol S[[k, m]]
= (R (S[[k-1, m+1]]-2S[[k-1, m]]+S[[k-1, m-1]]) + (2 S[[k-1, m]]- S[[k-2, m]]) - 1/2 ¥ dt (o -
e S[[k-1, m]] )S[[k-2, m]]) / (1-1/2 v dt (& - € S[[k-1, m]] )),
{k, 3, K}, {m, 2, M-1}];
Do[{y = (m-1) dx; s =S[[K, m]]; FinalState = Join[FinalState, {{y, s}}1},
{m, 1, Mprime+1}];
S =.

Export[filename, FinalState];
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T=17A/4

T = 172/4; K = Floor[T/dt +1]; Mprime = N[T/dx]; FinalState = {};
filename = StringJoin[ToString[ T/(/4)],"quarterwavelengths.dat"];
S = Table[0, {t, 0, T, dt}, {x, 0, L, dx}];
Do [S[[k, 11] = N[Sin[(k-1) dt w ]],{k, 1, K }];
Dol S[[k, m]]
= (R (S[[k-1, m+1]]-2S[[k-1, m]]+S[[k-1, m-1]]) + (2 S[[k-1, m]]- S[[k-2, m]]) - 1/2  dt (a -
€ S[[k-1, m]] )S[[k-2, m]]/(1-1/2 v dt (o - € S[[k-1, m]] )),
{k, 3, K}, {m, 2, M-1}];
Do[{y =(m-1) dx; s = S[[K, m]]; FinalState = Join[FinalState, {{y, s}}1},
{m, 1, Mprime+1}]
S =.

Export[filename, FinalState];
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T=35A/4

T =35,:/4; K = Floor[T/dt+1]; Mprime = N[T/dx]; FinalState = {};
filename = StringJoin[ToString[ T/(/4)],"quarterwavelengths.dat"];
S = Table[0, {t, 0, T, dt}, {x, 0, L, dx}];
Do [S[[k, 1]] = N[Sin[(k-1) dt w 1].{k, 1, K }];
Dol S[[k, m]]
= (R (S[[k-1, m+1]]-2S[[k-1, m]]+S[[k-1, m-1]]) + (2 S[[k-1, m]]- S[[k-2, m]]) - 1/2 ¥ dt (o -
€ S[[k-1, m]] )S[[k-2, m]]/(1-1/2 v dt (o - € S[[k-1, m]] )),
{k, 3, K}, {m, 2, M-1}];
Do[{y = (m-1) dx; s = S[[K, m]]; FinalState = Join[FinalState, {{y, s}}1},
{m, 1, Mprime+1}];
S =.

Export[filename, FinalState];
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T=97A/4

T =L; K = Floor[T/dt+1]; Mprime = N[T/dx]; FinalState = {};
filename = StringJoin[ToString[T/(/4)],"quarterwavelengths.dat"];
S = Table[0, {t, 0, T, dt}, {x, 0, L, dx}];
Do [SI[[k, 11] = N[Sin[(k-1) dt w ]],{k, 1, K }];
Dol S[[k, m]]
= (R (S[[k-1, m+1]]-2S[[k-1, m]]+S[[k-1, m-1]]) + (2 S[[k-1, m]]- S[[k-2, m]]) - 1/2 y dt (a -
€ S[[k-1, m]] )S[[k-2, m]]/(1-1/2 v dt (o - € S[[k-1, m]] )),
{k, 3, K}, {m, 2, M-1}];
Do[{y = (m-1) dx; s = S[[K, m]]; FinalState = Join[FinalState, {{y, s}}1},
{m, 1, Mprime+1}];
S =.

Export[filename,FinalState];
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Appendix B. Mathematica Code for Computing the Location of the Peak of

the First-Order Correction

Initializations

SetDirectory[ " C : \dissertation" |;

Off [ FindRoot :: "Istol" |;

ofn _ Integer, w _ Real] := 1/@\/\/(nﬁ—l)zwz +1+(n+1l)w;
Bln _ Integer, w _ Real] := 4/@\/\/@1 +1)P P +1l—(n+1)w;

modU1[w_Real, x_Real]::Abs[—%( e Al olx glall, o]x _ o=200, olx o2 1al0, “]x) ;

Flo _ Real,x _ Real |:= modU1[ o, x]

G[o _Real,x _Real] :== 9,F[o, u]/. {u — x}
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Compute x_max for low frequencies.

maximalLow = {}; M = 10;
Do[ {
®0=.001 k;
y = FindRoot[G[w0, x], {x, 2(~2 — 1)/~ wO}][[1, 2]1;
point = {®0, y};
maximalLow = Append[maximal.ow, point]

I8
{k, 1, M, .02}

]

Export[ " xmaxLow?2.dat ", maximaLow |;

Compute x_max for high frequencies.

maximaHigh = {}; n=9;

Do[ {
o0 =.1k;
y = FindRoot[G[w0, x], {x, 1}][[1, 2]];
point = {®0, y};
maximaHigh = Append[maximaHigh, point]
b
{k, 1, n}

]

Export["xmaxHigh2.dat", maximaHigh];
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