
Molecular Design of Crosslinked Copolymers

by John Eslick

Submitted to the graduate degree program in the Chemical and Petroleum
Engineering department and the graduate faculty of the University of Kansas School

of Engineering in partial fulfillment for the degree of Doctor of Philosophy.

Dr. Kyle Camarda, Committee Chair

Dr. Margaret Bayer

Dr. Kenneth Bishop

Dr. Stevin Gehrke

Dr. Aaron Scurto

Date defended: December 16, 2008

The Dissertation Committee for John Eslick certifies that this is the approved version
of the following dissertation:

Molecular Design of Crosslinked Copolymers

Dr. Kyle Camarda, Committee Chair

Date approved: January 8, 2009

i

Abstract

A complete methodology for the computational molecular design (CMD) of crosslinked

polymers is developed and implemented. The methodology is applied to the design of

novel polymers for restorative dental materials. The computational molecular design of

crosslinked polymers using optimization techniques is a new area of research. The first

part of this project seeks to develop a novel data structure capable of adequately storing

a complete description of the crosslinked polymer structure. Numerical descriptors of

polymer structure are then calculated from the data structure. Statistical methods are

used to relate the structural descriptors to experimentally measured properties. An

important part of this project is to show that useful property prediction models can

be developed for crosslinked polymers. Desirable property target values are then set

for a specific application. Finally, the structure-property relations are combined with a

Tabu search optimization algorithm to design improved polymers. Tabu search allows

much flexibility in the problem formulations, so a major goal of this project is to show

that Tabu search is a effective method for crosslinked polymer design.

To implement the molecular design procedure, a software package is developed. The

software allows for easy graphical entry of polymer structures and property data, and

contains a Tabu search optimization routine. Since computational molecular design of

crosslinked polymers is a relatively new area of research, the software is designed to be

easily modified to allow for extensive numerical experimentation.

Finally, the computational design methodology is demonstrated for the design of

polymers for restorative dental applications. Using the computational molecular design

methodology developed in this project, several monomers are found that may offer a

significant improvement over a standard HEMA/bisGMA formulation. The results of

the case study show that the new data structure for crosslinked polymers is effective

ii

for calculation of topological descriptors and property models can be developed for

crosslinked polymers. Tabu search is also shown to be an effective optimization method.

iii

Acknowledgements

This project was funded by NIH grants R13-DK069504-03 and NIH/NIDCR grant

DE014392 (PI: Spencer).

I would like to thank Dr. Spencer, Dr. Ye, and Dr. Park for helping me understand

dental materials and for providing the experimental data for this project. I would

also like to acknowledge Janine Einhellig, Natalia Davydova, and Harrison Davis who

worked hard to collect experimental property data.

I would like to thank my associate Sarah Shulda for all her help and for making

work more fun. Finally I would like to thank my research advisor, Dr. Camarda, for

helping me with his knowledge of molecular design, and for his editing. A good editor

is important, especially for me.

iv

Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Project Overview . 2

2 Background 5

2.1 Structural Descriptors and Property Prediction 5

2.2 Statistical Methods for QSPR Development 9

2.3 Molecular Design . 10

2.4 Dental Polymers . 12

3 Polymer Structure 14

3.1 Monomer Graphs . 16

3.2 Polymer Graphs . 17

3.3 Full Graphs . 21

3.4 Software Implementation . 21

v

3.4.1 Vertices and Edges . 22

3.4.2 Functional Groups and Graph State 24

3.4.3 Indexing, Adjacency Matrices, and Adjacency Lists 24

4 Structural Descriptors 27

4.1 Graph Algorithms . 28

4.1.1 Subgraph Isomorphism . 28

4.1.2 Path Finding . 31

4.1.3 Shortest Path . 32

4.1.4 Cycle Finding . 32

4.1.5 Block Finding . 33

4.2 Descriptor Calculation . 34

4.2.1 Molecular Weight and Atom Type 34

4.2.2 Connectivity Indices . 34

4.2.3 Shape Indices . 37

4.2.4 Crosslinking . 38

4.3 Effect of Graph Size . 39

5 Property Models 40

5.1 Multiple Linear Regression . 41

5.2 Descriptor Selection . 42

5.3 Cross-Validation . 43

6 Molecular Design 46

6.1 Problem Formulation . 46

6.2 Tabu Search . 48

6.2.1 General Method . 48

6.2.2 Implementation . 50

vi

7 Polymer Designer 54

7.1 Structure Input . 55

7.1.1 Monomer Structure . 55

7.1.2 Polymer Structure . 58

7.2 Property Input . 61

7.3 Descriptor Calculation . 62

7.4 Structure Optimization . 64

7.5 Modification . 64

8 Example: Restorative Dental Polymer Design 65

8.1 Physical and Chemical Properties . 69

8.2 Initial Descriptor Selection . 70

8.3 Graph Size and Descriptor Repeatability 71

8.4 Statistical Analysis . 73

8.5 Optimization . 83

8.6 Results . 84

8.7 Conclusion . 86

9 Conclusions and Recommendations 87

9.1 Conclusions . 87

9.2 Recommendations . 88

Nomenclature 91

References 94

A Polymer Designer Manual 99

A.1 Installing PD . 99

A.2 Opening a Database . 100

A.3 Adding and Editing Monomers . 101

vii

A.4 Adding and Editing Polymers . 110

A.4.1 Manual Polymer Entry . 110

A.4.2 Automatic Polymer Entry . 114

A.5 Adding and Editing Property Descriptions 115

A.6 The Property/Descriptor Spreadsheet 116

A.7 Molecular Design . 117

B Group Library 118

C Class Documentation 121

C.1 Tabu Search Implementation . 121

C.2 Using the Tabu Search Implementation 133

viii

List of Figures

1.1 Typical Molecular Graph (HEMA) . 2

3.1 HEMA Monomer Graph States . 16

3.2 BisGMA Monomer Graph States . 17

3.3 Polymer Graph Example . 18

3.4 Full graph for poly(HEMA) . 21

4.1 BisGMA Graph . 29

4.2 Benzene Subgraph . 29

4.3 Ester Subgraph . 29

4.4 Path Algorithm Tree . 31

4.5 Naphthalene . 33

6.1 Tabu Search Flow Chart . 51

7.1 Monomer Data Entry Form . 55

7.2 Graphical Molecule Graph Editing . 56

7.3 Molecule Graph Vertex Editing . 57

7.4 Polymer Data Entry Form . 58

7.5 Graphical Polymer Graph Editing . 59

7.6 Polymer Building Form . 60

7.7 New Property Entry Form . 61

7.8 New Property Entry Form . 62

ix

7.9 Column Selection . 63

8.1 HEMA . 66

8.2 bisGMA . 66

8.3 TEGDMA . 66

8.4 UDMA . 67

8.5 bisEMA . 67

8.6 PEGDMA . 67

8.7 TMPEDMA . 67

8.8 MPE . 68

8.9 Histograms for 0ξ with Different Polymer Sizes 72

8.10 Pairwise Plots of Tensile Strength and Simple Side Chain Connectivity
Indices . 76

8.11 Pairwise Plots of Tensile Strength and Valence Side Chain Connectivity
Indices . 76

8.12 Pairwise Plots of Tensile Strength and Simple Crosslink Connectivity
Indices . 77

8.13 Pairwise Plots of Tensile Strength and Valence Crosslink Connectivity
Indices . 77

8.14 Pairwise Plots of Tensile Strength and Other Descriptors 78

8.15 Tensile Strength as a Function of 2ξvs . 79

8.16 Groups Used to Build Monomers in Tabu Search 84

8.17 Candidate Monomer Structures . 85

A.1 Monomer Data Browser . 101

A.2 Chemical Structure Editor . 102

A.3 Monomer Data Entry Form . 103

A.4 Toolbox – Mouse Tab . 104

A.5 Toolbox – Graph Tab . 107

A.6 Atom Properties Form . 108

x

A.7 Bond Properties Form . 109

A.8 Periodic Table Dialog Box . 109

A.9 Including Monomers . 111

A.10 Editing a Vertex . 112

A.11 Editing an Edge . 113

A.12 Automatic Build Form . 114

A.13 Property Description Editor . 115

A.14 PD Spreadsheet . 116

B.1 Groups 0 to 15 . 119

B.2 Groups 16 to 24 . 119

B.3 Groups 25 to 33 . 119

B.4 Groups 34 to 42 . 120

xi

List of Tables

3.1 Polymer Composition . 20

8.1 Sample Compositions . 68

8.2 Target Properties . 69

8.3 Experimentally Measured Properties . 70

8.4 Standard Deviations for Different Polymer Sample Sizes 71

8.5 Initial Descriptor Set . 74

8.6 Connectivity Index Correlation Matrix 75

8.7 Best Combinations of Descriptors for Tensile Strength and Their R2 . . 80

8.8 Q2 Values for 3-fold Cross-Validation . 81

8.9 Best Tensile Strength Models Based on Monomer Connectivity 82

8.10 QSPR Summary . 82

8.11 Predicted Candidate Polymer Properties 85

xii

Chapter 1

Introduction

The goal of this project is to create and implement a methodology for the design

of improved crosslinked polymer materials for specific applications.

Researchers often use knowledge of chemistry and experimentation to improve ma-

terials in a trial-and-error process, which requires synthesis and testing of many new

polymers. Many properties can be important, and changes to the structure of a poly-

mer may improve some properties while degrading others. Therefore it is often difficult

to see how structural changes affect the overall usefulness of a product. The time and

money spent designing new materials can be reduced by using statistical analysis of em-

pirical data to develop property models, followed by applying optimization techniques

to design materials with desirable properties.

Using modeling and optimization to design new chemicals is known as computa-

tional molecular design (CMD). Fro this project, the structure of a molecule is related to

its properties using statistically derived models called quantitative structure-property

relations (QSPRs). CMD has been applied successfully in numerous cases (see Section

2.3). In this project, CMD is applied to the design of crosslinked random copolymers;

the structural complexity of these materials adds significant challenges.

1

Crosslinked random copolymers are made from two or more types of monomers

arranged randomly into a large network structure. Crosslinked polymers are used in a

number of applications including restorative dental materials, which are used here to

demonstrate the methodology.

Chemical product design shares many similarities with chemical process design.

Chemical processes and molecules can both be represented by a graph. In the case of

process design, vertices can represent unit operations and edges can represent product

streams. For a molecule, vertices represent atoms and edges represent bonds. Figure

1.1 gives an example of a molecular graph for 2-hydroxyethyl methacrylate (HEMA).

Graphs will be described in more detail in Chapter 3. Structural constraints for a valid

process graph are similar to those for a valid molecular graph. The similarities between

process design and molecular design allow molecular design problems to be formulated

in a very similar way. The vast amount of research in chemical process optimization

can be applied to molecular design. d’Anterroches and Gani (2005) even apply group

contribution techniques developed for molecular design to process design.

OH
O

O

Figure 1.1: Typical Molecular Graph (HEMA)

1.1 Project Overview

Molecular design of crosslinked polymers is an area that has received little if any

previous research. The complexity of the crosslinked polymer network makes devel-

opment of quantitative structure property relations (QSPRs) difficult. Much of the

current molecular design research focuses on relatively simple molecules, for which de-

terministic optimization algorithms can be applied. The purpose of this work is to

2

show that an effective data structure can be developed to store crosslinked polymer

structural data; that the data structure can be used to efficiently calculate topological

descriptors; that it is possible to develop useful QSPRs for crosslinked polymers; and

that a computational molecular design methodology can be successfully implemented

for crosslinked polymers.

This project consists of several parts. A literature review is conducted to find rele-

vant background information and methods useful for the design of networked polymers.

This background information is provided in Chapter 2.

The exact structure of the polymers being studied usually cannot be precisely de-

termined due to its complexity. Therefore, a major part of this project is to develop

data structures to store the polymer structures in a way that is useful for calculat-

ing structural descriptors in a reasonably efficient manner. The data structures are

described in Chapter 3.

The second part of the project seeks to provide a means to calculate structural

descriptors from the data structures previously mentioned. Many types of structural

descriptors are available in the literature and new ones may be created. Several graph

theory algorithms are implemented to allow calculation of structural descriptors as

described in Chapter 4.

Property prediction models are then developed with structural descriptors and

experimental data. The property models are often referred to as quantitative structure

property relations (QSPRs). Statistical methods are used to create QSPRs and to test

their validity. Chapter 5 describes the statistical methods used.

The QSPRs, structural constraints, and target properties are used to formulate

an optimization problem. The problem can be solved using numerous optimization

techniques. Tabu Search is used in this project, as described in Chapter 6.

Methods for CMD are implemented in the molecular design software developed for

3

this project. An overview of the molecular design software developed for this project

can be found in Chapter 7, and a detailed manual is provided in Appendix A.

The exact structure of crosslinked polymers is often complicated and not known. The

goal of the software is to provide a simple method of entering and storing polymer

structures and to allow many types of structural descriptors to be calculated easily.

The software allows many new methods to be tried with minimal effort. Since the types

of descriptors and form of the QSPRs are not known beforehand, extensive numerical

experimentation may be required; this is facilitated by the software. Appendix C

provides useful documentation for expanding the software.

The methodology and software were applied to the design of new adhesives for

restorative dental applications. Chapter 8 provides a detailed description of the

method and results.

Chapter 9 contains conclusions and recommendations for further work.

4

Chapter 2

Background

This section provides background information, and a review of relevant literature.

Details of calculations will be presented in subsequent chapters.

2.1 Structural Descriptors and Property Prediction

Structural descriptors provide a way to numerically describe the structure of a

molecule. The descriptors are used to link the structure of a molecule to its properties.

Some simple examples of descriptors are molecular weight and molecular formula.

Many structural descriptors can be obtained from structural graphs of molecules.

Graphs consist of a set of vertices and a set of edges. Edges are defined by two endpoints

from the vertex set (West, 2001). The structure of a molecule can be represented by

a graph in which the atoms are vertices and the edges are bonds. The graphs used for

calculating descriptors of organic chemicals usually have the hydrogen atoms removed,

and are called hydrogen suppressed graphs (Bicerano, 2002).

The types of descriptors that can be determined from graphs are called topological

descriptors. The topology of a molecule describes how the atoms of the molecule are

5

connected (Bicerano, 2002). The actual relative location of the atoms in the molecule

is not important in calculating topological descriptors. Descriptors that depend on the

locations of the atoms in space are called geometric descriptors. Accurately determin-

ing the geometry of large molecules is a difficult computational problem. Although

geometry determination is possible, the computation time required makes it unfavor-

able for inclusion in an optimization routine, which may need to evaluate hundreds or

thousands of molecules. This project focuses on topological descriptors.

One of the first molecular descriptors developed that is based on molecular graphs

is the Wiener Index (Wiener, 1947a,b). Wiener studied isomers of alkanes, so the

effects of number and type of atoms could be removed, and only the arrangement of

the atoms needed to be considered. Two structural parameters were used, the polarity

number and the path number. The polarity number is the number of pairs of carbon

atoms separated by three bonds. The path number is the sum of the distance between

every pair of atoms. Distance in terms of molecular a graph is the number of bonds on

the shortest path between two atoms. The path number (known as the Wiener Index)

provides a measure of the compactness of a molecule, and was shown to be useful in

predicting the boiling points of paraffins (Wiener, 1947b). Other studies have have

found the Wiener Index to be related to numerous other properties (Rouvray, 1986).

Connectivity indices have been widely used to predict molecular properties (Kier

and Hall, 1986; Bicerano, 2002). The definition and methods for calculating connectiv-

ity indices are described in Section 4.2.2. The first connectivity index was developed by

Randić (1975). Randić developed an index to quantify branching in molecular struc-

tures. Like Wiener, Randić found the branching index could be used to predict to the

boiling point of alkane isomers.

Kier and Hall (1986) extended Randić branching index ideas into a more general set

of connectivity indices and used them to predict properties of organic compounds. A

significant part of their work was to relate connectivity indices to properties of interest

6

in pharmaceutical design.

Connectivity indices have also been applied to predicting polymer properties. Bicer-

ano (2002) used zeroth- and first-order connectivity indices to predict several volumet-

ric, thermodynamic, optical, electrical, and mechanical properties of isotropic amor-

phous linear (not crosslinked) polymers. In addition to connectivity indices, correction

terms similar to group contributions were used for some properties. For most proper-

ties, between 100 and 200 data points were used and correlation coefficients of greater

than 0.99 were obtained. The correlations developed cannot be directly applied to this

project because no crosslinking was considered; however, the work of Bicerano (2002)

shows that connectivity indices are useful in predicting polymer properties.

Another important topological descriptor is the shape index (Kier, 1986, 1987).

The shape index (2κα) attempts to quantify the shape of a molecule by comparing

the number of two-bond fragments to the maximum number of two-bond fragments in

a star shaped molecule having the same number of atoms and the minimum number

found in the linear molecule. The shape index contains a correction factor for different

atomic sizes by measuring a proportional deviation from the radius of carbon in an

sp3 hybridization state. The shape index was shown to relate to properties in some

biological systems.

In addition to the descriptors already mentioned, numerous other topological de-

scriptors exist, many of which may be useful for this project. Todeschini and Consonni

(2000) provide an extensive listing of molecular descriptors.

Group contributions are another common way to describe molecular structure. In

group contribution methods structures are broken down into fragments. The number of

each type of fragment can be used to predict properties. Group contribution methods

are commonly used for property prediction. A few notable methods are described here.

A common group contribution method is UNIFAC (UNIQUAC Functional-group

7

Activity Coefficients) (Fredenslund et al., 1975). UNIFAC breaks chemicals up into

a number of small functional groups. Each group has a volume and area parameter

associated with it. In addition, group interaction parameters were used to quantify

binary interactions between two types of functional group. The UNIFAC model is

useful in designing liquid-liquid separation processes, when good experimental data is

not available. The UNIFAC groups have been applied in numerous other prediction

methods.

González et al. (2007) extended the UNIFAC method using connectivity indices to

estimate missing group contributions. Their method is used to extend the applicability

of UNIFAC in predicting vapor-liquid equilibria. Joback and Reid (1987) used a group

contribution method consisting of about 40 simple groups to estimate liquid viscosity

and some thermodynamic properties of small molecules. Group contribution methods

have been extensively used to predict the properties of pure components and mix-

tures of small chemicals, but they have also been applied to polymers. Van Krevelen

(1997) provides group contribution methods for predicting numerous optical, electrical,

magnetic, mechanical, and acoustic properties of non-crosslinked homopolymers.

In this project, crosslinked polymers are studied. The structural descriptors de-

scribed so far are useful, but crosslinking has a very large effect on the polymer proper-

ties. Some measure of the degree of crosslinking must also be considered in the structure

description. Bicerano et al. (1996) correlated the crosslink density to glass transition

temperature in randomly crosslinked polymers. Van Krevelen (1997) also noted the

importance of crosslink density on the properties of polymers. Bicerano (2002) states

the the correlations based on connectivity indices developed in that work are not appli-

cable to crosslinked polymers due to the overwhelming effect of crosslinking. This work

uses a explicit description of crosslinking to develop new QSPRs, so the optimization

formulation is capable of designing crosslinked polymer systems.

8

2.2 Statistical Methods for QSPR Development

This section provides an overview of statistical techniques that may be useful in the

development of new QSPRs. For the most part, these methods are quite well known

and widely used.

The simplest method used to relate descriptors to properties is multiple linear

regression (Draper and Smith, 1966). The descriptors make up a set of predictor

variables, and the property is the response variable. The regression equation will be

a linear combination of the predictor variables. It is also possible to add predictor

variables by transforming some of the existing variables. By adding the square of

a descriptor, for example, the regression equation could be a parabola. Exponential

functions as well as other functional forms can be fit using linear regression by adding

transformed variables. The response variable can also be transformed.

Partial least squares (PLS) is commonly used in computational chemistry (Mevik

and Wehrens, 2007). PLS is useful when large numbers of predictor variables are

available. The basic idea of PLS is similar to principal component analysis (PCA).

The variation in the predictor and response variables is considered and new predictor

variables (components) are created using linear combinations of the original predictor

variables. The first component is in the direction of the largest variation. The next

component is orthogonal to the first and accounts for the second most variation and so

on. Regression can then be performed using some number of the first components.

Nonlinear regression (Bates and Watts, 1988) is sometimes useful in the develop-

ment of QSPRs. Nonlinear regression is also performed by minimizing the sum of the

squared residuals, but the parameters being determined are not linearly related, so an

iterative optimization method is usually used. Nonlinear regression is most useful to

estimate parameters when a theoretical or semi-empirical property model is available.

9

Once reasonable QSPRs have been found using a regression technique, model val-

idation must be done. Adding parameters to a model will always improve how well a

model fits the available data, but may decrease prediction accuracy for new data. A

good way to test the validity of a model is through cross-validation, where the data is

split into training sets and test sets. In k-fold cross validation, the data is split into k

approximately equally sets, and each of the sets is used in turn as the test set (Efron

and Tibshirani, 1993). This provides an error estimate for each data point when it is

not used in the model data.

Using cross-validation, a statistical value known as Q2 can be calculated, which

is similar to the multiple correlation coefficient (R2) (Quan, 1988). Q2 provides some

estimate of how well a model works at predicting for new data points not used to make

the model. Ideally Q2 would be close to R2. A low Q2 could indicate that the model

has too many parameters and is over-fitting the data.

2.3 Molecular Design

This section provides an overview of molecular design techniques and examples of

how molecular design has been applied successfully. Molecular design has been applied

using both deterministic and heuristic optimization methods. CMD has been applied to

polymers, but little information is available for design of general crosslinked polymers.

Some examples of CMD studies are provided here.

Gani et al. (1991) used group contributions to implement molecular design for chem-

icals such as solvents for separation processes. The method uses a range of acceptable

values for a set of target properties. New molecules were created by attaching the

groups from a group contribution method together subject to feasibility constraints.

Molecules were then screened to select those that met the target property requirements.

Molecules were further evaluated using process simulation.

10

Sahinidis et al. (2003) used a branch-and-bound optimization technique to design

new refrigerants. The boiling point, critical temperature, critical pressure, heat capac-

ity, and heat of vaporization were estimated using the Joback and Reid (1987) group

contribution method. The problem was formulated as an integer programming prob-

lem. Molecules were constructed from the group contribution groups, and a set of

constraints was written to ensure molecules were feasible. The problem was formulated

such that the global optimum was found. The study identified some novel possible

substitutes for Freon 12. The results were sets of groups used to construct a molecule.

Karunanithi et al. (2005) designed solvents and solvent mixtures having desirable

properties for a number of applications. Solvent properties were estimated using group

contribution methods such as UNIFAC. The problem was formulated as a mixed-integer

nonlinear optimization problem. The problem was then broken down into subproblems,

so that some sets of constraints could be solved to limit the search space before solving

the final optimization problem. The method is demonstrated by designing a solvent

for a liquid-liquid extraction process.

Allcock (1992) discussed some of the issues associated with the design of poly-

mers for specific applications, and encouraged a rational design approach. The article

points out the need to develop structure property relations. Several examples are pre-

sented that show how altering various aspects of the structure affect the properties

of a polymer. The article discusses backbone and side chain modifications as well as

crosslinking.

Venkatasubramanian (1994) and Sundaram and Venkatasubramanian (1998) exam-

ined the computational molecular design of linear polymers using a genetic algorithm.

The polymers are assembled from groups, and the properties are predicted using Van

Krevelen group contributions (Van Krevelen, 1997).

11

Maranas (1996) used group contribution methods for molecular design of straight-

chain polymers. A reformulation of the molecular design problem is used so that the

problems can be written as mixed-integer linear programs, and solved using existing

optimization software. This allowed the best solutions to be enumerated.

Camarda and Maranas (1999) used zero- and first-order connectivity indices to de-

velop new structure property relations for prediction of the properties of straight-chain

polymers. The properties studied were: heat capacity, glass transition temperature,

cohesive energy, refractive index, and dielectric constant. The property models where

used to formulate a convex mixed-integer nonlinear optimization problem to find new

polymers meeting specific target properties. A deterministic algorithm was used to find

a provably optimal solution.

In this project, Tabu search is used to solve the optimization problem (Glover,

1990b). Although Tabu search is a well established optimization method in other ar-

eas, Lin et al. (2005) first applied it to computational molecular design. That work

considered the design of transition metal catalysts, and used QSPRs based on connec-

tivity indices. Tabu search is described in detail in Chapter 6.

2.4 Dental Polymers

The molecular design framework developed here was applied to the design of restora-

tive dental adhesives. This section provides a description of the types of materials being

used and why improved materials are needed.

Polymer-based materials are increasingly being used in place of dental amalgam.

Polymer-ceramic composites are more aesthetically pleasing than amalgam, and there

is also concern over the environmental impact of using materials that contain mer-

cury. Dental composites, however, are significantly less durable than dental amalgam

12

(Bernardo et al., 2007).

Crosslinked methacrylate copolymers, typically containing 2-hydroxyethly methacry-

late (HEMA) and 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] (bisGMA),

are used in dental composites and adhesives. Methacrylate polymers are susceptible to

degradation of ester bonds, especially in the presence of esterase enzymes (Finer and

Santerre, 2004). Design of a completely new type of material is not desirable due to

the vast amount of previous research on use and clinical application of methacrylates.

Instead, this project focuses on making improvements to existing materials.

The crosslinked structure of dental polymers presents a major challenge for molec-

ular design. The network structure of crosslinked polymers may change dramatically

due to processing conditions, and this structure has a large effect on properties (Ye

et al., 2007a). The sensitivity of these polymers to processing conditions means that

many property values reported in the literature are inconsistent, and are therefore un-

desirable for the development of QSPRs. A new set of consistent experimental polymer

property data is therefore needed.

The improvement of dental materials is an important area of ongoing research. The

application of the molecular design framework presented here can speed development

of such materials, so dental materials design provides an excellent test case for this

work.

13

Chapter 3

Polymer Structure

Numerical descriptors of polymer structure need to be calculated for a large num-

ber of candidate structures in the CMD process, so a data structure is needed which

is capable of storing structural information for crosslinked polymers. The data struc-

ture should allow the efficient calculation of many types of topological descriptors.

The most basic information needed to define a random crosslinked polymer structure

includes: the chemical structure of the monomers that form the polymer, the composi-

tion of the resin (material before polymerization), and the degree of conversion of the

monomer functional groups. Additional information may also be useful to define the

polymer structure more accurately, such as information about intramolecular reactions

during polymerization or unequal reactivities of the different functional groups. With

this information, a representative section of polymer can be generated and used for

calculation of structural descriptors.

Only topological descriptors are considered in this work. Topological descriptors are

based on the types of atoms and bonds present and how they are connected. Although

atom coordinates are stored, no attempt is made to generate an accurate geometric

representation of the molecules, and no geometric descriptors are used. This avoids

14

any requirement to minimize the Gibbs free energy of a structure, which would be

too time consuming within a molecular design method. Topological descriptors are

often sufficient to predict properties (Van Krevelen, 1997; Bicerano, 2002), and are

much more efficient to calculate than geometric descriptors. Calculation efficiency is

of particular importance in the optimization phase of molecular design.

In this work, polymer structures are stored using three types of graphs: monomer,

polymer, and full. Monomer graphs are used to store the chemical structure of monomers.

Each vertex represents an atom or connection point between monomers, and each edge

represents a chemical bond. Polymer graphs contain a representative section of the

overall polymer structure. Each polymer graph vertex represents a monomer, and each

edge represents a bond between monomers. Polymer graphs can be generated sys-

tematically using a set of rules. Full graphs describe a representative section of the

chemical structure of polymer networks. The full graph is formed by replacing the

monomer vertices in the polymer graph with the atoms and bonds of the monomers.

Each type of graph is useful for different types of calculations. Monomer graphs are

useful in forming the polymer structure, and may be used to predict properties of the

unreacted monomers such as viscosity. The polymer and full graphs contain similar

information. However, when constructing the polymer structure, it is much easier to

deal with monomer vertices than a complete chemical structure. The polymer graph

gives a clear picture of the arrangement of monomers. Easy access to the identities of

the monomers in the polymer structure is lost in the full graph.

These data structures allow relatively straight-forward calculation of most descrip-

tors, and therefore allow numerical experiments to be performed quickly. Since the

types of descriptors and structural information that will be needed for QSPRs is not

known beforehand, ease of use is given primary importance at this stage. More efficient

methods can be created once QSPRs are obtained for a particular system.

15

3.1 Monomer Graphs

Monomer graphs have two types of vertices, atom and connection points. Atom

vertices simply represent atoms in the chemical structure of the monomer. In the

polymerization process, monomers react and bond together. Connection point vertices

are dummy atoms that represent an atom in a neighboring connected monomer. Each

connection vertex is labeled so that specific bonding patterns can be specified. For

example, monomers can be connected head-to-tail.

Monomer graphs are capable of storing the structure of a monomer in various

states of reaction. Figure 3.1 shows a monomer graph for 2-hydroxyethly methacrylate

(HEMA) and Figure 3.2 shows the graph for 2,2-bis[4(2-hydroxy-3-methacryloyloxy-

propyloxy)-phenyl] (bisGMA). The Xx atoms are dummy connector atoms used for

polymerization reactions. The vertices and edges of the graphs have labels represent-

ing a functional group and state. Each atom and bond is part of some functional

group and a state of that functional group. Functional groups can have one or more

states which represent the functional group unreacted or reacted in various ways. The

system is very useful because it allows the monomer structure to be entered once,

but allows potentially numerous reacted structures to be generated. In many cases,

monomer properties such as viscosity or solubility are important, so the original unre-

acted monomer structure remains available.

OH
O

O

OH
O

O

Xx

Xx

(A) (B)

Figure 3.1: HEMA Monomer Graph States

The functional group system has no effect on the efficiency of graph algorithms.

The vertices and edges of a graph are re-indexed when a functional group state changes.

The indices of the vertices and edges that are in the current state are set lower than

16

OO

OH OH

OO

O O

OO

OH OH

OO

O O
Xx

Xx

OO

OH OH

OO

O O
Xx

Xx

OO

OH OH

OO

O O
Xx

Xx

Xx

Xx

(A)

(B)

(C)

(D)

Figure 3.2: BisGMA Monomer Graph States

the vertices and edges that are not in the current state, so out-of-state vertices and

edges may be ignored by algorithms.

Various properties are connected to each atom vertex, like the coordinates, atomic

number, and charge. The coordinates are mostly used for displaying graphs in the

software (see Chapter 7), however as part of some future work they could also be used

in geometric descriptor calculation.

3.2 Polymer Graphs

Polymer graphs describe the bond patterning between monomers. Each vertex

represents a monomer, and an edge represents a bond between monomer units. For

simple polymers, such as linear block copolymers, polymer graphs can be constructed

17

manually by arranging a pattern of monomers. It is more convenient to systematically

generate the structure in more complicated cases. The overall design framework is

equally effective whether a simple set of rules or a complicated molecular simulation

is used to generate the polymer structure. The size of the generated polymer depends

on what is needed to adequately represent the structure. Graph size will be examined

more closely in Chapter 4. An example polymer graph is given in Figure 3.3.

H

B

H

H

H

H

H

B

B H

H

H

H

B

B

H

H

H

B

H

H

B

B

H

B

Core Buffer

H = HEMA
B = bisGMA

Figure 3.3: Polymer Graph Example

Simple polymers have a well-defined regular repeating pattern; however, crosslinked

random copolymers form a network with no obvious repeat unit. A large representative

section of polymer is generated to solve problems associated with descriptor calculation.

Crosslinked polymer networks are normally treated as infinite, but the polymer graphs

must be finite. Representative polymer sections will have many cut chains. The concept

of a core and buffer section is used to minimize the impact of the cut chains on descriptor

calculation. Calculations are carried out on the core, while some number of buffer

monomers separates the core from the cut chain ends. The way the buffer section

is used depends on the type of descriptor being calculated. Examples of descriptor

calculation are provided in Chapter 4.

The data structure described is not dependent on the method used to generate

polymer graphs. The simplest adequate method is probably best, so a simple method

18

will be the starting point. Clearly, there is no point in using a very complicated

method of generating polymer structure if a simpler method works well. A number

of assumptions are made to generate the polymer structures. The exact crosslinked

structure of the polymer network is not known, but the degree of conversion is measured

experimentally. The degree of conversion is the fraction of carbon-carbon double bonds

that react in the polymerization reaction. It is assumed that all double bonds in the

methacrylate monomers have equal reactivity, and that no intramolecular reactions

occur during polymerization. These assumptions work well with a limited knowledge

of the reaction kinetics and crosslinking structure. Generation of a more accurate

structure may be an area for study as more data is collected. The following example

shows how a structure is generated for a polymer consisting of 45 wt% HEMA and

55 wt% bisGMA. The degree of conversion of carbon-carbon double bonds measured

experimentally for this system is 76.93%. This example is taken from experimental

data collected as part of a summer research program at the University of Missouri

Kansas City (UMKC) Dental School.

First, the composition of the resin must be converted to mole fraction. The molec-

ular weight of HEMA is 130.143 g/mol and the molecular weight of bisGMA is 512.599

g/mol. Assuming there are 100g of resin, there are 45/130.143 = 0.34577 moles of

HEMA, 55/512.599 = 0.10730 moles of bisGMA, and 0.34577 + 0.10730 = 0.45307

moles of resin. The mole fraction composition is 0.76317 moles of HEMA per mole of

resin, and 0.23683 moles of bisGMA per mole of resin.

The second step is to calculate the amount of monomer in each state by assuming

that the functional groups react with equal probability. Figures 3.1 and 3.2 show the

states of the HEMA and bisGMA graphs. Based on the degree of conversion there

is a 76.93% chance that a given double bond reacts. This means 23.07% of HEMA

is in state A (see Figure 3.1) and 76.93% of HEMA is in state B. The portion of

bisGMA existing in state A is the probability that neither functional group reacts

19

which is 0.2307 × 0.2307 = 5.32%. The percent of bisGMA existing in state B is the

probability that the first functional group reacts and the second does not, which is

0.7693 × 0.2307 = 17.75%. The portion of bisGMA in state C is 17.75% just as for

B, and following the same pattern the portion of bisGMA in state D is 59.18%. The

bisGMA portions add up to 100%.

The portions of the monomers in each state can be used to find the mole fraction of

each monomer state in the polymer. Table 3.1 shows the composition. Refer to Figures

3.1 and 3.2 for the monomer states. The unreacted monomer portion is contained in the

final polymer, however it does not become a part of the polymer network. Unreacted

monomer may act as a plasticizer and affect the monomer properties, so quantifying its

presence is important. To construct the polymer network graph, unreacted monomer

must be removed. The monomer composition of the polymer network is also shown in

Table 3.1.

Table 3.1: Polymer Composition

Monomer Mole Frac. (total) Mole Frac. (network)
HEMA (A) 0.176 0.000
HEMA (B) 0.587 0.723
bisGMA (A) 0.013 0.000
bisGMA (B) 0.042 0.052
bisGMA (C) 0.042 0.052
bisGMA (D) 0.140 0.173
total 1.000 1.000

Probabilities based on the composition are used to generate a polymer graph de-

scribing the connectivity of the monomers. The graph is a tree because it is assumed

that no intramolecular reactions occur; however, polymer graphs are not necessarily

trees. Trees are graphs that contain no cycles (rings). The assumption of no intramolec-

ular reactions leads to the simplest method of generating polymer structure, while still

providing sufficient information for the prediction of important properties. Figure 3.3

shows a small graph for this example.

20

3.3 Full Graphs

Full graphs are large graphs which show the detailed chemical structure of a repre-

sentative section of polymer. The full graph is obtained by combining the information

in the monomer and polymer graphs, and can be used to calculate most topological

structure descriptors in a straightforward way. While the full graph provides a detailed

chemical structure, information about the monomer connectivity provided in the poly-

mer graph is difficult to extract. Figure 3.4 shows a small example of a full graph for

poly(HEMA).

Xx

Xx

OO

OH

OO

OH

OO

OH

OO

OH

OO

OH

Core BufferBuffer

C C C C

Figure 3.4: Full graph for poly(HEMA)

The simplicity of using a fixed representative section of polymer greatly acceler-

ates implementation of methods for computation of structural descriptors needed for

property prediction.

3.4 Software Implementation

This section provides an overview of how the structure graphs are implemented.

Further detail is provided in Appendix C and in the source code of the software.

The basic structure of the three types of graph is the same. The different graph

types can be obtained by adding some additional properties to the graph, vertices, and

edges of the basic graph.

21

3.4.1 Vertices and Edges

The graphs consist of a set of properties for the graph, a list of vertices, and a

list of edges. The vertices and edges each consist of a data structure that stores some

important information. The basic graph contains a list of functional groups and their

current states, an array of pointers to vertices, and an array of pointers to edges.

Vertices contain the following information:

• UID (an integer unique identifier);

• index (position of the vertex in the vertex pointer array);

• x, y, z (Cartesian coordinates);

• fGroup (the functional group it is in);

• fState (the state of the functional group it is in);

• isCore (whether vertex is in the core);

• isConnector (whether a vertex is a connector); and

• connectorLabel (a unique label for each connector).

The UID of a vertex is an integer that never changes. It is used to properly connect

edges when vertex pointers change, for example, when a graph is copied or loaded from

a file. The index is an integer that sequentially labels vertices starting with 0. The

indexes of the vertices change when a vertex is deleted or the state of a functional

group changes. A pointer to each vertex is stored in an array the index corresponds

to the array index. Assignment and use of the index is detailed in Section 3.4.3. The

polymer design software contains a visual graph editor, which is the primary purpose

for storing the coordinates of each vertex. The variables fGroup, fState and isCore

are vertex labels whose use will be described in the following sections. The variable

22

isConnector is set to true if a vertex is a dummy vertex representing a connection to

another graph, and connectorLabel is a label for connectors.

Edges contain the following information:

• UID;

• index;

• fGroup;

• fState;

• isCore;

• v1 ptr (pointer to the first endpoint vertex);

• v2 ptr (pointer to the second endpoint vertex);

• v1 uid (UID of the first endpoint vertex);

• v2 uid (UID of the second endpoint vertex);

The information contained in an edge is similar to that for a vertex. The main

difference is that the pointers to the end-point vertices are included. If a directed

graph is needed, edges can be considered to be directed from vertex 1 to vertex 2. The

UIDs of the vertex endpoints are stored, because if the graph is copied the pointers

change, and the UIDs can be used to update the pointers.

Monomer graphs can be built by adding an atomic number label to the vertices and

a bond type label to the edges. Polymer graphs can be created by adding a monomer

type to the vertices, and a bond type to the edges. In addition, polymer graphs

need connector labels for each endpoint vertex to indicate which connector vertex in

a monomer the bond attaches to. Full graphs are the same as monomer graphs, just

larger.

23

3.4.2 Functional Groups and Graph State

The chemical structure of monomers changes when they react to form polymers.

At least some of the monomers in crosslinked polymers have multiple functional groups

that allow one polymer chain to be joined to another to form a network. Drawing and

storing structures for every possible configuration of all of the monomers could be very

tedious and confusing. For that reason, a system of functional groups and states is

devised, which allows a graph to change structure.

Graphs contain functional groups. These functional groups are only used in monomer

graphs and correspond to groups of atoms and bonds that may react in a polymerization

reaction. Each functional group may have one or more states. The states correspond

to a given monomer reaction path (see Figure 3.2 for example). The main part of the

monomer which does not change is labeled as functional group zero.

The graph contains a list of all of the functional groups and their current state. If

a vertex or edge is not in the current state of its functional group, it is considered to be

out-of-state and given an index at the back of the array, so it can be ignored. If an edge

is marked in-state but one of its endpoint vertices is out-of-state, it is also considered

to be out-of-state; this avoids edges which are not connected to two vertices, meaning

all bonds must connect two atoms.

3.4.3 Indexing, Adjacency Matrices, and Adjacency Lists

The index of a vertex or edge is a typical way to reference these objects in a graph

theory algorithm. The polymer design software has a graph editor that allows vertices

to be deleted, and the state of functional groups can change, so the index to the vertices

and edges cannot remain constant. This section describes how indices are assigned and

how they are used for adjacency lists and matrices.

24

Edges and vertices are sorted similarly in the software, so only vertex sorting is

described. The graph contains an array of pointers to vertices. The vertex pointers are

sorted in the array and the array index of the pointer is the vertex index. The index is

stored in the vertex data structure so it can be found quickly without having to search

the array.

The first step is to mark each vertex and edge as being in-state or out-of-state

as described previously. The out-of-state vertices are sorted to the back. Sorting the

out-of-state vertices and edges to the back allows them to be treated as if they do not

exist in graph theory algorithms. It is possible that connector vertices may be treated

differently in some cases, so the connector vertices are sorted to the back of their group

(in-state or out-of-state). The vertices are then sorted by functional group, and finally

by UID to ensure they are sorted the same each time.

Two vertices are adjacent if an edge connects them. An edge is incident to a

vertex if the vertex is one of its endpoints. Adjacency matrices, adjacency lists, and

incidence lists are common data structures used in graph algorithms; once the graph

is indexed these structures can be made as needed. If n is the number of vertices in

a graph, an adjacency matrix is a square n × n matrix. The index of each row and

column correspond to the vertex indices. The matrix is usually a binary matrix where

a 1 indicates that two vertices are adjacent. If the graph is undirected, the matrix

is symmetrical about the diagonal so Ai,j = Aj,i. In this implementation, the edge

index plus one is used to indicate a connection; this way the connecting edge is easy to

find. One is added to the index because indexing starts at zero, and zero indicates no

connection.

Adjacency lists are a list of adjacent vertex indices associated with each vertex.

Incident lists are a list of all incident edge indices associated with each vertex.

With the graphs properly indexed and some basic data structures available descrip-

25

tor calculation can be considered.

26

Chapter 4

Structural Descriptors

There are many numerical descriptors of chemical structure which can be used to

predict the properties of polymeric systems. A few common descriptors are examined

here. Connectivity (Kier and Hall, 1986; Bicerano, 2002) and shape indices (Kier, 1986,

1987) have been used successfully in QSPRs and require relatively little computational

effort. Group contributions are also commonly used to predict the properties of chem-

icals including polymers (Van Krevelen, 1997). Identification of structural groups is

also important in prediction methods aside from group contributions (Bicerano, 2002).

Of course, additional descriptors are needed to describe crosslinking. Most topolog-

ical descriptors calculations can be easily implemented using the polymer structure

information described in Chapter 3.

A representative section of polymer is generated, so descriptors can be calculated

as they would for any small molecule. A feature of this system is the use of core and

buffer sections of the polymer network. Calculation of descriptors often requires in-

formation about neighboring polymer sections; the buffer provides this information.

The accuracy and repeatability of the descriptor calculations for random copolymers

depend on the size of the representative section. Larger sizes cause the calculations to

27

take longer. The time required for descriptor calculation in analysis of experimental

polymer data is generally insignificant, since the number of polymers for which proper-

ties are measured is generally less than 200. However, descriptor calculation time may

be a concern when using optimization to find new structures. An optimization routine

may evaluate thousands of polymer structures while searching for those likely to have

desired properties.

The system for descriptor calculation employed in this work saves a significant

amount of time in preliminary analysis of structural descriptors and property models.

Many different descriptors can be evaluated without the need to deal with complex

probability calculations. This allows flexibility in terms of the structural descriptors

and property models to be used. The following sections provide examples of how

descriptors can be calculated. Numerous other descriptors can be added easily.

4.1 Graph Algorithms

Several graph algorithms useful for descriptor calculation are implemented in the

polymer design software to expedite descriptor calculation. An overview of these algo-

rithms is provided here.

4.1.1 Subgraph Isomorphism

A subgraph isomorphism algorithm allows specific chemical substructures to be

identified; it is important in group contribution methods, and in identifying functional

groups in other types of descriptor calculations. Subgraph isomorphism may also be

used to identify similarities between molecules.

The Ullmann (1976) subgraph isomorphism algorithm is used with some minor

modification to identify chemical substructures. The result of the algorithm is a set

28

of mappings of a smaller (or same size) graph onto a larger graph. A description of

subgraph isomorphism and modifications to the algorithm is provided.

As an example, consider the graph for bisGMA (Figure 4.1), and two subgraphs

(Figures 4.2 and 4.3). The numbers in gray are vertex indices. In the ester subgraph,

the atoms labeled with black numbers are dummy atoms.

OO

OH HO

OO

O O

1
2

5

3

4
6 7

8

9

10
1112

13 14

15

1617

18

19

20

21

22 23

24

2526

27
28

29

30

31

32
33

34

35

36

37

Figure 4.1: BisGMA Graph

1 2

3

45

6

Figure 4.2: Benzene Subgraph

C

1 O

O

1
24

5

2
3

Figure 4.3: Ester Subgraph

In the original implementation of the algorithm, atom and bond types are not

considered. Searching for the benzene subgraph (Figure 4.2) in bisGMA (Figure 4.1)

reveals the six-membered ring can be found 24 ways in bisGMA. The subgraphs are

found by mapping the first atom in the benzene ring to any one of the 6 atoms in a

ring from bisGMA. The rest of the atoms can be paired up proceeding clockwise or

counterclockwise. Instead of finding 24 mappings, it would be more useful just to find

the two rings in bisGMA.

Usually, in a group contribution method, the molecule is broken into fragments

29

and atoms can only be in one fragment. The first modification to the isomorphism

algorithm is to allow groups to be marked as having been used when a mapping is

found. Only two mappings of benzene onto bisGMA are found if reuse is disallowed.

The atom and bond type are usually important when considering molecular graphs.

The next modification of the algorithm only allows atoms or bonds of the same type to

be paired. With this modification, the benzene ring will be aligned so that the pattern

of double and single bonds also match.

The degree of a vertex is the number of adjacent vertices. In the subgraph iso-

morphism algorithm, a condition for two vertices to be paired is that the degree of a

vertex in the subgraph has to be less than or equal to the degree of the vertex in the

larger graph. The last modification of the algorithm is to allow an option for requiring

the degree to be equal. If that is done, there will be no instances of Figure 4.2 found

in bisGMA. In fact, if only connected graphs are considered, Figure 4.2 will only be a

subgraph of itself.

To see how requiring the degree of vertices to be equal is useful, consider the ester

group in Figure 4.3. If we want to find this exact group in bisGMA, we can require

degree equality, and ignore the dummy atoms after using them to calculate the vertex

degrees. The ester group maps to bisGMA in two places: 1, 2, 5 to 4, 6, 5 and 1, 2, 5

to 33, 32, 34.

The isomorphism algorithm is implemented such that it can be used in all the ways

described above. The result is all the mappings of the subgraph onto the larger graph,

and a count of how many times a subgraph was found. The algorithm can be used in

group contribution methods or in finding atoms that are part of a specific structure.

30

4.1.2 Path Finding

A path in a graph is a set of vertices where each vertex is adjacent to the previous

one and none are repeated. An important part of calculating many types of topological

indices is finding paths. For example, the shape index (2κα) requires finding all paths of

length two. In many cases, specialized algorithms can be used to calculate descriptors,

but a general algorithm to find paths can save time when trying to test large numbers

of descriptors.

The path finding algorithm is based on a breadth first search (BFS) (West, 2001).

Suppose a set of connectivity indices is to be calculated up to fifth order. All of the

paths up to length 5 need to be found in a molecule. To get an idea of how this

algorithm works, again consider bisGMA as shown in Figure 4.1. The algorithm builds

a tree by first finding all the vertices which are one edge from the original vertex, then

to all the vertices that are two edges away from the original vertex, and so on. As new

vertices are added to the tree, a check is made to ensure they are not already ancestors,

so cycles are avoided. The tree is shown in Figure 4.4 for paths starting at vertex 15.

The smaller gray numbers are the order in which the vertices are added.

15

14 16 18

13 17 19 20 21

12

11

10

22 26

23 25

24 24

0

1 2 3

4 5 6 7 8

9 11 12

13 15 16

201917

12

11

10

10

14

18

PathsLength

0

1

2

3

4

5

Figure 4.4: Path Algorithm Tree

To find the paths of length 5, start at the vertices on level 5 of the tree and trace

back to the top of the tree. Likewise any path shorter than length 5 is also available.

31

The algorithm can be run in a loop over all of the vertices to find all the paths of

length 5 or less. If every vertex is used as a starting point for the algorithm, all of

the paths will be found twice, forward and backward; to avoid this, paths where the

starting index is greater than the ending index can be ignored. If no paths of length 5

exist, the algorithm terminates at the longest paths, so level 5 would be empty.

4.1.3 Shortest Path

The path finding algorithm can be used again with minor modification to find the

distance or the shortest path between two vertices. The algorithm starts from the first

vertex and terminates after the level where it reaches the second vertex. The reason

the algorithm does not terminate immediately upon finding the second vertex is that

there may be more than one path of the same length. For example, the shortest path

from 15 to 12 in Figure 4.1 has a length of 3, and there are two ways to get there:

15 → 14 → 13 → 12 and 15 → 16 → 17 → 12. The distance and the shortest

paths are returned by the algorithm. The shortest path is required in some descriptor

calculations. Some of the correlations in Bicerano (2002) require the shortest path

across the backbone of a polymer, so finding the shortest path is useful in descriptor

calculation.

4.1.4 Cycle Finding

A cycle can be made from a path by adding an edge between the first and last

vertices of a path. A cycle is equivalent to a ring in a chemical structure. It is often

important in descriptor calculation to know if an atom is a member of a ring.

The fundamental cycles of a graph can be found by looking at a spanning tree

and co-tree of the graph (Gibbons, 1985). A spanning tree of a graph is a connected

subgraph that contains every vertex, but no cycles. The co-tree consists of edges

32

not in the spanning tree. Fundamental cycles are a set of cycles in a graph where

all other cycles can be found by combining fundamental cycles. Figure 4.5 shows

naphthalene. Naphthalene has two fundamental cycles 1 → 2 → 3 → 4 → 5 → 6 and

5 → 6 → 7 → 8 → 9 → 10. The larger cycle with all ten vertices can be obtained by

combining the edges of the fundamental cycles and removing the common edges.

3

2
1

4
5

6
7

8

9
10

Figure 4.5: Naphthalene

To find the fundamental cycles, a spanning tree and co-tree are created using a

breadth first search. Each edge in the co-tree shows the location of a fundamental

cycle. The cycles can be found by finding the shortest path in the spanning tree

between the two vertices that make up a co-tree edge.

4.1.5 Block Finding

Blocks of a graph are subgraphs with no cut edges or vertices (West, 2001). A

connected graph is a graph were a path can be found between any two vertices in the

graph. When a cut-edge or cut-vertex is removed from a graph, the graph becomes

disconnected. Gibbons (1985) presents an algorithm to find the blocks of a graph.

The block finding algorithm provides a simple way to find the backbone of a polymer

or reacted monomer. It is known which atoms of a monomer connect to other monomers

in a polymerization reaction. By adding an extra pseudo-edge between the two atoms

at each end of the backbone, the atoms in the same block as the two atoms at the ends

of the backbone are also in the backbone. The side-chain groups then all have a cut

edge that separate them from the backbone.

33

4.2 Descriptor Calculation

This section describes a few descriptors that can serve as a starting point for de-

veloping QSPRs. Numerous other descriptors can be calculated quite easily as needed.

4.2.1 Molecular Weight and Atom Type

Molecular graphs are usually written with hydrogen atoms omitted. By looking

at the atomic numbers, the charge on the atoms, the number of bonds, and the types

of bonds, the locations of hydrogen atoms can be inferred. Once the locations of

the hydrogens have been assigned, the molecular weight can be calculated. When

determining the hydrogen locations, atom hybridization and special groups are located

which may be used later in descriptor calculations.

4.2.2 Connectivity Indices

Connectivity indices are based on path fragments of a molecular graph. An algo-

rithm for finding these paths has already been presented. There are two common types

of connectivity indices: simple and valence. The simple connectivity indices provide a

measure of the branching in a molecule, while the valence connectivity indices relate

to the electronic configuration and types of atoms present.

The first step in calculating connectivity indices is to assign δ-values to each atom.

The δ value is the vertex degree for simple connectivity indices. The degree of a vertex

in the number of adjacent vertices. The formula for the valence δv is given in Equation

4.1 (Bicerano, 2002). Zv is the number of valence electrons around an atom, Z is the

total number of electrons around an atom, and NH is the number of hydrogens bonded

to an atom. It is also possible to define other deltas to create new types of connectivity

indices. The deltas in the polymer design program are stored in a lookup table, and

34

are found using the atom hybridization and number of attached hydrogens, which were

determined previously.

δv =
Zv −NH

Z − Zv − 1
(4.1)

Once delta values are assigned to each atom, connectivity indices can be calculated.

The calculation of zeroth- and first-order indices is straight-forward. The formulas are

given by Equations 4.2 and 4.3 (Bicerano, 2002), where nχ is the nth-order connectivity

index. In Equation 4.3, i and j are the indices of the endpoint atoms of a bond.

0χ =
∑

i∈atoms

1√
δi

(4.2)

1χ =
∑

i,j∈bonds

1√
δiδj

(4.3)

If higher order connectivity indices are needed, the path finding algorithm is useful.

The general equation for connectivity indices is given Equation 4.4. Using the path

finding algorithm for path lengths of the largest order connectivity index also finds all

of the shorter paths, so lower order connectivity indices can also be calculated without

extra computational effort.

nχ =
∑

k∈n−length paths

1√∏
i∈atoms in k δi

(4.4)

By looking at the equations for connectivity indices, it is obvious that χ increases as

the molecule size increases. Some properties are dependent on the size of a molecule, so

χ may be useful. Crosslinked polymers are generally considered infinite in that they are

a single large molecule (Flory, 1941), so the size independent connectivity indices may

35

be appropriate. Therefore a set of size independent connectivities (ξ) are calculated

using Equation 4.5, where N is the number of non-hydrogen atoms.

ξ =
χ

N
(4.5)

The connectivity indices are calculated on a representative section of the polymer

network. Many paths extend out of the polymer section; this is where the core and

buffer concepts, described in Section 3.2, are useful. The contribution of paths that

start in the core and go into the buffer area can be divided. For the second order

connectivity index, the formula becomes Equation 4.6, where x is a binary variable

that is 1 when an atom is in the core. The buffer prevents the connectivity indices

from being affected by the chain ends where the representative polymer section is cut.

2χ =
∑

i,j,k-paths

xi + xj + xk
3

1√
δiδjδk

(4.6)

4.2.2.1 Backbone and Side-chains

Sometimes it may be desirable to calculate separate descriptors for the backbone

and side-chains (Bicerano, 2002). The first step is to use the backbone finding algorithm

to mark the backbone and side-chain portions of the polymer.

For this project, polymers are divided into three sections. Each atom is marked

as being part of a backbone, side-chain, or crosslink. The backbones are the main

polymer chains. In the case of vinyl polymers, the backbones are just chains of carbon

atoms. Side-chains are groups attached to the backbone that are not on a path along a

backbone and do not connect two backbones. Crosslinks are like side chains, but they

join two backbones together.

Each section can have its own descriptors. For connectivity indices, the calculations

36

are handled like the core and buffer, where the path contributions are split between the

backbone and side-chain. Calculations can be done other ways; for example, paths could

not be counted at all unless contained completely in a particular section. Requiring

paths to be completely in a side chain may better separate the structure of the side-

chain from the backbone.

4.2.3 Shape Indices

Since polymers are very large molecules, shape indices are probably not useful

for predicting polymer properties; however, they maybe useful in predicting monomer

properties or degree of conversion, which could depend on the monomer shape. Shape

indices are calculated using the definitions given by Kier (1987).

The shape index measures the shape of a molecule relative to two extreme shapes.

The first shape is a straight chain of atoms. The second shape is a star molecule with

a central atom having the remaining atoms bonded to it. The shape index requires

counting all length 2 paths. In a linear molecule, the number of length 2 paths is a

minimum and can be calculated by Equation 4.7, where A is the number of atoms. The

number of length 2 paths is at a maximum in a star shaped molecule and is calculated

using Equation 4.8.

2Pmin = A− 2 (4.7)

2Pmax =
(A− 1)(A− 2)

2
(4.8)

Assuming all atoms are the same size, the shape index (2κ) can be calculated by

Equation 4.9. The same algorithm that finds paths for connectivity indices can be used

to find and count paths for the shape index. When all the atoms are arranged in a line

37

2κ = (A− 1) and when the molecule is a star 2κ = 4(A− 1)−1; other arrangements of

atoms fall somewhere in between. When there are three atoms, there is only one way

to arrange them, so star and line are the same.

2κ =
2 · 2Pmax · 2Pmin

(2Pi)2
=

(A− 1)(A− 2)2

(2Pi)2
(4.9)

The shape index can also be adjusted to account for atoms of different size. The

shape index was first developed for molecules containing all sp3 hybridized carbon

atoms. To adjust for other atoms the size is adjusted relative to sp3 carbon using

equation 4.10. An overall correction factor is calculated using Equation 4.11, where rx

is the radius of atom x.

αx =
rx
rCsp3

(4.10)

α =
∑

atoms

αx (4.11)

The adjusted shape index is given by Equation 4.12.

2κα =
(A+ α)(A+ α− 2)

(2Pi + α)2
(4.12)

4.2.4 Crosslinking

The polymers studied in this project are vinyl polymers. The backbones consist of

chains of carbon atoms. Each monomer contributes two carbon atoms to a backbone.

The degree of crosslinking in this case can be estimated by Equation 4.13. The degree

of crosslinking estimate (CD) is the number of crosslinks per number of monomers.

38

Fi is the mole-fraction of monomer graph state i in the polymer network. Nrv,i is the

number of reacted vinyl groups in monomer graph state i.

CD =
∑

i∈monomer states

Fi (Nrv,i − 1) (4.13)

Other measures can also be used. If non-vinyl polymers, such as polyurethanes,

are studied, a new method of estimating crosslink density will be needed.

4.3 Effect of Graph Size

Since many descriptors may be calculated from a representative section of polymer

generated by a Monte Carlo method, it is important to consider the effect of the size of

the section on the precision of the calculations. The larger the representative section of

polymer is, the more repeatable the descriptor calculations will be. However, a larger

section of polymer requires more computation time, so it is important to get an idea

of how big is big enough. This may require some experimentation for the system of

interest. A study for the dental polymer test case is provided in Section 8.3.

39

Chapter 5

Property Models

To create a predictive model, numerical descriptors of structure are related to

physical or chemical properties of the polymeric systems. While phenomenological

models or molecular simulation may be used to predict properties, QSPRs based on

topological structural descriptors allow rapid estimation of properties directly from the

chemical structure, and work well within an optimization framework for the design of

novel polymer networks.

This work focuses mainly on linear regression as a means to develop property models

due to the limited experimental data collected on the systems being studied. Nonlinear

regression can be used to estimate parameters if there is reason to believe a property

model has a particular functional form that is nonlinear with respect to the parameters,

for example, ŷ = b1 sin(b2x). The design framework implemented here does not impose

any limitations on the property models.

This section provides a brief overview of the methods used to select QSPRs for this

project. Standard and widely used statistical methods were used, so extensive detail is

not necessary.

40

5.1 Multiple Linear Regression

Linear regression uses an equation of the form given by Equation 5.1, where ŷ is the

predicted value of y, xi are the predictor variables, and βi are the model parameters.

The predictor variables come from molecular structure descriptors. Predictor variables

can also be transformations of descriptors; for example, a descriptor could be squared

or two descriptors could be multiplied.

ŷ = b0 + b1x1 + b2x2 + . . .+ bkxk (5.1)

Experimental data is used to estimate the model parameters by solving the opti-

mization problem given by Equation 5.2. Here n is the number of data points, and yi

is the observed value of y at a specific set of xi values. Equation 5.1 is used to calculate

ŷ, and the bs are optimized. The problem is easily solved although the calculations are

tedious and usually statistical software is used.

min
n∑
i=1

(yi − ŷi)2 (5.2)

Several parameters are commonly calculated to assess the quality of a model. The

most common is the multiple correlation coefficient (R2) given by Equation 5.3. The

value of R2 should be close to 1 which indicates there is little error in the prediction for

the data. R2 can be interpreted as the fraction of variance about the mean explained

by the regression equation (Draper and Smith, 1966). The correlation coefficient does

not say anything about statistical significance. It is always possible to get an R2 of 1

when there are as many model parameters as data points.

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

=
∑

(ŷi − ȳ)2∑
(yi − ȳi)2

(5.3)

41

There are two statistical tests to help determine statistical significance. The f -

test can determine the significance of the whole model, and the t-test can determine

significance of each parameter. Tests for significance take into account the degrees of

freedom and therefore the amount of data used. In both tests, the assumption is made

that the errors are normally distributed (Draper and Smith, 1966).

The f -test can be used to determine if two variances are significantly different.

The null hypothesis of the f -test is that two variances are the same. Applied to linear

regression, the f -test can be used to determine if a model is statistically significant

(Draper and Smith, 1966). Generally a 95% probability is used to reject the null

hypothesis. Software usually reports a p-value for the f -test, and a p-value of less than

0.05 is considered significant.

The t−test can be used to determine whether the mean of a set of numbers is

significantly different than a population mean. The t−test applied to regression is

used to determine if regression coefficients are significantly different than zero (Draper

and Smith, 1966). A regression coefficient of zero would mean a particular predictor

is unrelated to the response variable. Again, a p−value of less than 0.05 is usually

considered significant.

Cross-validation can be used to determine if a model gives good predictions; this

discussed further in Section 5.3.

5.2 Descriptor Selection

Far more descriptors are available than can actually be used to create a QSPR, and

using too many descriptors in a model may over-fit the data leading to a model with

a good R2 that predicts poorly for new data. Therefore, a method is needed to select

the best set of descriptors to use.

42

The only way to find the best set of descriptors is to test every combination. Testing

every set of descriptors can be very time consuming. If there are 50 possible descriptors,

there are 250 ≈ 1.13 × 1015 possible combinations. Of course, property models would

not usually contain 50 descriptors. With a more reasonable number of descriptors in

the model the number of combinations to examine is much fewer. If there are up to 5

descriptors, there are a much more reasonable
(
50
1

)
+
(
50
2

)
+
(
50
3

)
+
(
50
4

)
+
(
50
5

)
= 2, 369, 935

combinations.

For this project, a software package called LEAPS is used to select descriptors

(Lumley, 2004), which works with the R statistical software (R Development Core

Team, 2007). LEAPS uses a branch and bound method to implicitly examine every

combination of descriptors up to a certain number. LEAPS can return some number

of the best models of each size. The best model can be chosen using R2 for a given

number of descriptors. The next step is to select the number of descriptors to use.

There is no firm way to select a good number of descriptors. The simplest method

is to look at a plot of R2 as a function of number of descriptors. Usually above a certain

number of descriptors improvement in R2 is minimal. The next thing to look at is the

f− and t−tests to determine if the models and descriptors are statistically significant.

Cross-validation was used in this project to select the best model size.

5.3 Cross-Validation

This section describes the cross-validation procedure used in this project. Other

methods of cross-validation are also possible.

The k−fold cross validation process is used in this project (Efron and Tibshirani,

1993). The data is split randomly into k test sets of approximately equal size. The

regression is performed k times with each test set omitted in turn. In this procedure,

43

each data point is omitted once. This method is an improvement over leave-one-out

validation, because more than one point is left out at a time. In leave-one-out validation,

the regression equation may change very little when only one point is left out. The

error in the prediction for each point in each test set can be calculated.

The cross-validation procedure provides a measure of how well the model may

predict for new data points not used in the regression. It is a good way to determine

if a model over-fits the data. Large errors in the test predictions may mean the model

contains too many predictors.

There are many ways to evaluate the cross-validation results. Q2 is used for this

project because it is easy to interpret (Quan, 1988). Q2 is calculated similarly to R2

but the residuals from the test sets are used. The test sets are data that is not used to

make a model, so a measure of the predictive value of a model is obtained. A Q2 value

close to the R2 value of a model is good, and lower Q2 is worse. It is also possible that

Q2 could be negative if the predictions of the model are worse that just using the the

mean of the model data.

PRESS is the sum of the squared prediction errors, and is calculated using Equation

5.4, where yi is the observed response variable, ŷi,(k) is the predicted value from the

model were the kth test set is omitted, K is the set of test sets, and |K| is the number

of test sets.

PRESS =
|K|∑
k=1

∑
i∈Kk

(
yi − ŷi,(k)

)2 (5.4)

Equation 5.5 gives the calculation for Q2, where ȳ(k) is the mean response variable

with the kth set omitted.

Q2 = 1− PRESS∑|K|
k=1

∑
i∈Kk

(yi − ȳ(k))2
(5.5)

44

The test sets are selected at random, soQ2 will be different each time it is calculated.

The cross-validation procedure is repeated many (500 or 1000) times to get a more

representative sample of Q2’s. The distribution of Q2 can be used to make decisions

about the proper number of descriptors to uses in a property model and whether a

model is useful.

45

Chapter 6

Molecular Design

Molecular design is the application of optimization techniques to designing im-

proved molecules. Section 6.1 describes the optimization problem for this project. Tabu

search is the method used in this work, so Section 6.2 provides a detailed description

of Tabu search and how it was implemented.

6.1 Problem Formulation

In this project, a set of desired target properties is chosen for a polymer. The

properties define an optimal material for a given application. The goal is to design a

new monomer that when used in the formulation of the resin, gives polymer properties

matching the target properties. The objective function for the optimization problem is

given by Equation 6.1, where Pi,targ is the desired value of property i and Pi,est is the

value of property i estimated using the QSPRs. The scaling factor (si) can be used to

adjust the relative importance of each property.

f =
∑

i∈properties

si

(
Pi,targ − Pi,est

Pi,targ

)2

(6.1)

46

The objective function value gets closer to zero as the estimated properties of the

polymer approach the targets. The goal is to minimize the objective function value.

The advantage of this objective function is that is easy to judge the quality of a solution,

and there is a fixed lower bound on the optimum. The disadvantage is that properties

cannot be minimized or maximized, but since QSPRs should not be used to extrapolate

beyond the data used to make them, this should not be a problem. A linear objective

function may be better for many optimization methods, but Tabu search is used here

and the form of the objective function is not critical; this allows any type of QSPR to

be used. In Tabu search, the objective function value of each solution is calculated to

evaluate its quality, but there is no need for the problem to be linear or convex, and

even black-box models can be used. However, the form of the objective function may

make a difference to the performance of the Tabu search algorithm.

The molecular design problem also contains constraints. The constraints require

that the monomer that is designed has a feasible molecular structure. In this project,

feasible molecular structures are connected and the valency of each atom is satisfied.

Other structurally constants can be imposed, for example, peroxide groups can be

excluded so that more stable molecules are obtained, or symmetry could be required

so that more synthesizable structures are obtained. There are also constraints that

require the monomer to be of a specific type. Various other structural constraints can

also be applied. The structural constraints do not need to be explicitly formulated,

and are handled in the Tabu search method as explained in Section 6.2.2.

In molecular design, it is possible that some property must absolutely meet some

minimal requirement. Property constraints can be added to the objective function

in the form of a penalty, thus avoiding the need to explicitly add constraints to the

problem formulation. Avoiding the need to consider the additional constraints may

make the Tabu search formulation somewhat simpler.

47

6.2 Tabu Search

Tabu search is a heuristic approach to solving a variety of optimization problems,

which relies on a memory of recently visited solutions. It has been applied in a number

of areas including molecular design (Lin et al., 2005). Tabu search cannot be guaranteed

to find a global optimal solution, but it has been successful in finding good solutions

to large combinatorial optimization problems (Glover, 1990a).

The limited accuracy of the QSPRs mean that the best solution in practice may

not be the global optimum of the optimization problem. It is also difficult to apply

deterministic algorithms for many types of molecular design problems due to non-

convexities in the constraint set. Therefore, the ability of Tabu search to find good

solutions to a wide variety of problems makes it well suited to molecular design.

6.2.1 General Method

This section describes the general Tabu search method for minimization problems.

For a more specific example, see Sections 6.2.2 and 8.5.

A Tabu search algorithm starts with an initial solution. It is assumed here that

all of the solutions generated are feasible; however, some Tabu search implementations

make use of infeasible solutions. The initial solution may be specified (to search within

specific area) or randomly generated. The search proceeds from one solution to the

next until some termination criteria are met. The goal of the search is to find a solution

with the lowest objective function value.

A set of valid moves are defined, which given a feasible starting solution, generate

other nearby feasible solutions. Solutions that can be reached by a specified number

of these moves are neighbors of the original solution. A subset of neighbors is chosen

by applying moves. This is often done by applying some number of allowed moves at

48

random. In some cases, the entire set of neighbors can be used. The search proceeds

to the next solution by choosing the best solution from the subset of neighbors which

is not Tabu. The search may move to a new solution which has a higher objective

function value than the original solution, to escape a local minimum.

Selection of a new solution is subject to Tabu restrictions (Glover, 1990a). The

restrictions are implemented using Tabu lists which record either recent solutions or

moves. Multiple Tabu lists may be defined to record different types of recent moves,

or different properties of a solution. The sizes of the Tabu lists are limited to reduce

computation, and allow solutions to be revisited later with the search proceeding in

a potentially different direction (de Werra and Hertz, 1989). The Tabu restrictions

work by disallowing moves that would lead back to recent solutions or disallowing new

solutions which are too similar to ones in the Tabu list. The best size for a Tabu list

depends on the application, but it is often related to the size of the problem (Glover,

1990a)

The purpose of Tabu restrictions is to prevent the search from cycling around a

local optima, and encourage searching in more diverse areas. If a local minimum is

reached, the next solution chosen will have a higher objective function value. Without

the Tabu restrictions, there is a good chance the solution would return directly to the

local minimum (de Werra and Hertz, 1989).

Tabu restrictions can sometimes block access to solutions that may be very good.

To help overcome this, aspiration criteria can be applied to allow solutions or moves

that would otherwise be considered Tabu. An example of this would be to allow moves

to solutions which have a lower objective function value than the best found so far

(Glover, 1990a).

A set of criteria is needed to stop the search. The search can be terminated after

a set number of iterations where no solution with a objective function lower that the

49

lowest so far is found (de Werra and Hertz, 1989). In some problems with a set lower

bound (as is common in molecular design when specific properties are to be matched),

an additional criteria can be employed to stop when the objective function value is

close enough to the bound (Glover, 1990a).

The procedure described so far uses short-term memory. In addition to short-

term memory, additional levels of longer term memory can be added to accomplish

intensification and diversification (Glover, 1990a). A list of good solutions may be kept

these solutions may indicate especially promising areas to search more thoroughly;

this is called intensification. The intensification can be accomplished by modifying

the objective function to penalize solutions outside the intensification area (de Werra

and Hertz, 1989). Diversification can be accomplished by repeating the search with an

initial solution far from solutions already explored.

Tabu search contains a number of adjustable parameters. The parameters may be

different depending the implementation, but typical parameters include the size of the

Tabu lists, the size of the neighbor subset, and the size or number of moves. Other

parameters may also be adjusted, such as the types of moves allowed and what types

of Tabu restrictions to use. Adjustments made to parameters can make a substantial

difference in the performance of the algorithm. Due to the wide range of problems and

ways Tabu search can be implemented, it is difficult to find proper values for these

parameters. Numerical experiments are used to find good parameter values.

6.2.2 Implementation

The Tabu search procedure is very general and can be applied in numerous ways.

This section describes the implementation of Tabu search used in this project. A simple

flow chart for the Tabu search procedure used is given by Figure 6.1. Additional details

for a specific example can be found in Section 8.5.

50

Start

Generate initial solution, make
current solution, add to Tabu list

Generate nn neighbors from
the current best

n : number of neighbors
n : number of solutions in Tabu list
n : number of non-improving solutions for end

Sort neighbors by objective

Make current solution local best,
i = 0

Add current solution to Tabu list

Delete oldest solution on Tabu list

Is
there a

non-Tabu
neighbor?

Is the
best neighbor

better than the
best local
solution?

Is the
Tabu list size

greater
than
n ?

Make best neighbor the
current solution

Make best non-Tabu neighbor the
current solution

Is the
current

solution better
than the local

best?

i=i+1

Is i
greater than

 n ?

return
best

yes

no

yes

no

yes

no no

yes

yes

no

i

n

t

i

t

Figure 6.1: Tabu Search Flow Chart

51

The problem considered is the design of a new monomer to be used in a resin

formulation to make improved dental polymers. The objective function measures the

difference between the estimated properties of a solution and the desired properties.

The objective function has a lower bound of zero, and properties are estimated using

QSPRs.

A set of chemical groups are defined that are used to create a monomer. Solutions

to the problem are graphs in which groups are represented by vertices and connections

between groups are represented by edges. By representing monomers this way, the

monomer structure can be represented by an oligomer of groups, and the polymer

graph structure can be used in the Tabu search procedure. The monomers are modified

by deleting, inserting, or replacing groups at random. These changes only yield new

feasible monomers, and the maximum number of changes that can be applied in one

move is specified. Some number of neighbors is generated by randomly applying the

moves. The solution with the best non-Tabu objective function is used as the next

solution. If all neighbor solutions are Tabu, the best neighbor is chosen; this should

rarely happen. If it happens frequently, the Tabu restrictions are too strict or the moves

are too small. An aspiration criteria is also applied to allow neighbors that are Tabu

to be selected if they have a better objective function value than the best previously

found.

The initial solutions used are existing monomers or new monomers generated ran-

domly. A set of candidate monomers could be obtained from the best solutions of

the various starting points. Often the same monomers appear repeatedly as the best

solution, so all solutions beneath some threshold can be stored.

The Tabu list stores some number of recent solutions, and solutions that are too

close to ones on the Tabu list cannot be selected unless they meet the aspiration criteria.

The closeness of the solutions to those on the Tabu list is judged by comparing some

set of descriptors. If any descriptor is sufficiently different, the solution is not Tabu.

52

The length of the Tabu list and the amount of difference that is sufficient are adjustable

parameters.

Once a set number of non-improving iterations is reached, the best solution is

returned. It is also possible to return the solutions with objective functions below

some threshold, or a set of the best solutions found. The search can be repeated from

a new starting point different from the solutions found to find a more diverse set of

solutions, or started from a good solution with relaxed Tabu restrictions to refine the

solution.

Now that the individual parts of this project have been discussed, the next chapter

presents an overview of the software implementation of the molecular design method.

53

Chapter 7

Polymer Designer

The main product of this research is the Polymer Designer (PD) software pack-

age which implements most of the crosslinked polymer design framework. Statistics

are computed using an external statistical software package; R (R Development Core

Team, 2007) was used in this project. Since little previous work has been performed

for CMD of crosslinked polymers, the software is meant to be a platform for numerical

experimentation leading to development of useful QSPRs and optimization techniques.

The goal is to make calculation of new descriptors easy to add. New ways of generating

a representative section of polymer can also be evaluated. The structure storage and de-

scriptor calculation facilities can be leveraged to quickly develop heuristic optimization

techniques.

This chapter provides an overview of PD. A more complete manual is provided in

Appendix A.

PD stores structure and property information in a database. The public domain

SQLite database was used (SQLite, 2008). The QT graphical toolkit was used for the

graphical user interface (Trolltech, 2008).

54

7.1 Structure Input

The chemical structures of monomers and polymers are stored in a database. This

section describes how chemical structures may be entered and edited.

7.1.1 Monomer Structure

Several pieces of information can be stored with the monomer structures. This

information can be used to sort the monomers and keep track of the sources of monomer

data. Figure 7.1 shows the data entry form. In addition to monomers, other small

molecules may also be entered. The polymer designer program can be a useful tool to

study small molecules in addition to polymers.

Figure 7.1: Monomer Data Entry Form

55

The structure of molecules can be entered by drawing them with a mouse or import-

ing standard mol-files (MDL Information Systems, 2005). Mol-files are a common file

format in computational chemistry. If an imported file contains a three-dimensional

structure, it can be viewed and rotated in three dimensions. Figure 7.2 shows the

molecule editor. Atoms and bonds can be drawn using the mouse, so molecule entry is

very simple. This project did not make use of stereo-isomers, but if they are need that

capability can be added through additional bond and atom labeling.

Figure 7.2: Graphical Molecule Graph Editing

The properties of atoms and bonds can be edited by selecting them and editing

their properties in a form. Figure 7.3 shows an example of an atom being edited.

Once a molecule is saved in the database, it can be reopened and edited as needed.

56

Figure 7.3: Molecule Graph Vertex Editing

57

7.1.2 Polymer Structure

Entry of polymer structures is very similar to that for monomers. The same data

fields are available for polymers as shown in Figure 7.4.

Figure 7.4: Polymer Data Entry Form

Polymer graphs have vertices that represent monomers. Monomers can be added

to a polymer by selecting them from the database of monomers. Polymer graphs for

simple polymers can be drawn directly, but for more complicated crosslinked polymers,

the graphs can be generated automatically based on a set assumptions about how the

polymer forms. Figure 7.5 shows the polymer editing window, and Figure 7.6 shows

the form to generate a polymer graph for a crosslinked polymer.

58

Figure 7.5: Graphical Polymer Graph Editing

59

Figure 7.6: Polymer Building Form

60

7.2 Property Input

The database also stores experimental data for the polymers and monomers. The

first step is to create an entry in the database for the experimental properties. The

database stores units and a description of each property. The form to enter a new

property is shown in Figure 7.7.

Figure 7.7: New Property Entry Form

Once the property description is entered in the database, the property values for

each monomer or polymer can be entered in the descriptor and property spreadsheet.

First, a set of monomers or polymers and properties is selected to display on the

spreadsheet. The properties for each compound can be edited on the sheet. Missing

data is indicated by “NA.” Figure 7.8 shows a spreadsheet with property information.

61

Figure 7.8: New Property Entry Form

7.3 Descriptor Calculation

The same spreadsheet that is used to enter and display property data is used

to calculate descriptors. Using the add rows button, compounds can be added to

the monomer or polymer sheet. The add columns button adds database information,

properties, and descriptors to the spreadsheet. Figure 7.9 shows several tabs of the

column selection form.

Once the data to display on the spreadsheet is selected, the calculate button fills

in the spreadsheet from that database and by calculation. The spreadsheet can be

exported as a tab-separated text file, and imported into a spreadsheet or statistics

program.

62

Figure 7.9: Column Selection

63

7.4 Structure Optimization

Once QSPRs have been developed using statistical software, they can be added

into PD. The QSPRs can be used as the basis for the objective function for structure

optimization. The optimization routine will generally return several promising graphs

representing a new monomer as well as their estimated properties and objective function

values. The details of the optimization routine depend on the specific system being

studied. See Chapter 8 for an example.

7.5 Modification

Much of the usefulness of Polymer Designer lies in being able to extend it. PD pro-

vides a means to store and access chemical structures; several useful graph algorithms;

and a Tabu search framework. With these, new descriptors can be added, and opti-

mization algorithms can be developed quickly. Appendix C provides more information

about extending PD.

64

Chapter 8

Example: Restorative Dental

Polymer Design

Over two-thirds of restorative dentistry involves replacement of failed restorations

(Murray et al., 2002). Clearly restorative dental materials with improved durability

are needed. This example is used to demonstrate the methodology for the design of

novel monomers to improve the durability of dentin adhesives. The dentin adhesives

are used to secure dental composite materials to the dentin of a tooth. The composite

contain the same polymers as the adhesive, with ceramic particles added.

Properties of a small set of polymethacrylates were measured experimentally, and

QSPRs were created by relating this data to topological descriptors and formula-

tions. The properties include tensile strength, modulus of elasticity, glass transi-

tion temperature, initial polymerization rate, and degree of conversion. The details

of the experimental methods used to measure these properties are described by Ye

et al. (2007a,b). The experimental data used here was collected as part of a sum-

mer research program at the University of Missouri Kansas City (UMKC) Dental

School. Polymer samples were prepared in a consistent way. The polymers were com-

65

posed of 45 wt% HEMA, 30 wt% bisGMA and 25 wt% of a third monomer. Seven

monomers were used as the third monomer: bisGMA; triethyleneglycol dimethacry-

late (TEGDMA); urethane dimethacrylate (UDMA); bisphenol A polyethylene gly-

col diether dimethacrylate (bisEMA); polyethylene glycol dimethacrylate (PEGDMA);

trimethylol-propane mono allyl ether dimethacrylate (TMPEDMA); and 1,1,1-tri-[4-

(methacryloxyethylaminocarbonyloxy)-phenyl]ethane (MPE). Figures 8.1 through 8.8

show the structures of these monomers. TMPEDMA and MPE are newly synthesized

monomers (Park et al., 2007). Resin samples were cured without water and with 11

wt% water, so 14 total samples were used. Table 8.1 provides the resin composition

for each sample.

OH
O

O

Figure 8.1: HEMA

OO

OH OH

OO

O O

Figure 8.2: bisGMA

O

O
O

O

O

O

Figure 8.3: TEGDMA

The data collected so far is enough to provide a complete example of the method-

ology; however, additional data is need to develop more useful QSPRs. As more data

is collected, better descriptors and QSPRs can be found.

66

O
O N

N O
O

O

O

O

O

Figure 8.4: UDMA

OO

O

O
O

O

O
O

n m

Figure 8.5: bisEMA

O

O
O

O
O O

O
O

O
O

O

O

Figure 8.6: PEGDMA

O

O

O

O

O

Figure 8.7: TMPEDMA

67

O O

O

N

O

O

O

N

O

O

O O

N

O

O

Figure 8.8: MPE

Table 8.1: Sample Compositions

Sample ID Components Composition at Curing (wt%)
QA HEMA/BisGMA 45/55
QB HEMA/BisGMA/TEGDMA 45/30/25
QC HEMA/BisGMA/UDMA 45/30/25
QD HEMA/BisGMA/BisEMA 45/30/25
QE HEMA/BisGMA/PEGDMA 45/30/25
QF HEMA/BisGMA/TMPEDMA 45/30/25
QG HEMA/BisGMA/MPE 45/30/25
WA QA/Water 89/11
WB QB/Water 89/11
WC QC/Water 89/11
WD QD/Water 89/11
WE QE/Water 89/11
WF QF/Water 89/11
WG QG/Water 89/11

68

8.1 Physical and Chemical Properties

Several important properties were measured for each sample. Several properties,

tensile strength (σ), modulus of elasticity, elongation at break, and fracture tough-

ness were measured with a tensile testing device. The degree of conversion (DC) of

carbon-carbon double bonds and the initial polymerization rate (r0) were measured

using infrared spectroscopy. The glass transition temperature (Tg) was measured us-

ing a differential scanning calorimeter. The polymerization reaction was initiated by

exposing the resin to a blue light with an intensity of 550 mW/cm2 for 40 seconds at

room temperature. The polymer samples were then stored at room temperature. The

properties, aside form initial polymerization rate, were measured after more than 24,

when the polymerization reaction was practically complete.

Statistically significant QSPRs were found for tensile strength, initial polymeriza-

tion rate, glass transition temperature and degree of conversion. In this case, it would

be best if all of the properties were as high as possible. Extrapolating use of the QSPRs,

however, may result in very large errors. For that reason, properties to be maximized

were set to the high end of the range measured experimentally. This is generally not a

problem, because good properties values can be found in existing polymers; for exam-

ple, a polymer may have a very good tensile strength but a poor initial reaction rate.

Molecular design is used to find polymers with a good combination of properties. The

target properties are given in Table 8.2.

Table 8.2: Target Properties

Property Target
tensile strength (σ) 80 MPa

initial polymerization rate (r0) 130 mol/l/s
glass transition temperature (Tg) 120 ◦C

degree of conversion (DC) 100 %

Table 8.3 provides the experimentally measured property data.

69

Table 8.3: Experimentally Measured Properties

Sample σ (MPa) r0 (mol/l/s) Tg (◦C) DC (%)
QA 71 96 119 69.3
QB 61 86 121 74.4
QC 73 122 109 70.9
QD 66 107 91 76.3
QE 57 104 78 82.9
QF 62 78 95 72.6
QG 72 121 126 64.0
WA 66 108 125 87.0
WB 46 103 111 87.2
WC 64 117 120 93.6
WD 51 94 94 91.5
WE 39 99 83 96.5
WF 36 82 132 89.1
WG 43 109 144 82.8

8.2 Initial Descriptor Selection

Connectivity indices have been used successfully by Bicerano (2002) in the predic-

tion of polymer properties. Simple and valence connectivity indices up to third order

were used in this study; the equations are given in Chapter 4. These values were cal-

culated separately for the entire polymer, just the backbone, just the side groups, and

for the individual monomers.

The degree of conversion was predicted from the monomer structures, assuming

the curring conditions are the same as the experiments. Once the degree of conversion

is predicted, it can be used in the calculation of the degree of crosslinking in the

optimization routine. For the initial QSPR development, the degree of conversion

is available from the experimental data. Crosslinking and degree of conversion were

considered as descriptors for polymer properties. Counts of the number of atoms in

rings and in aromatic rings were included as descriptors.

70

8.3 Graph Size and Descriptor Repeatability

The descriptors other than connectivity indices are calculated from the polymer

composition and the monomer structures. Connectivity indices are calculated from a

full graph of a large polymer section. The effect of the size of the polymer section on

the consistency of connectivity indices is studied using numerical experiments.

Six sets of 100 polymer sections are constructed, where the core of the polymers

contains 1500, 1250, 1000, 750, 500, and 250 monomers. The zeroth- to fourth-order

simple connectivity indices are calculated for each polymer section to show how the

size of the polymer section affects the repeatability of the calculations. Fourth order

connectivity indices were not considered for QSPRs, but were included in this size

study. Figure 8.9 shows histograms for the zeroth order simple connectivity index (0ξ)

at each polymer sample size.

If it is assumed that the error in the descriptor calculations is normally distributed,

approximately 98% of the measured values will be within ±2 standard deviations of

the mean. The standard deviation then provides a good measure of the uncertainty in

the measurement of the descriptors. Table 8.4 provides the standard deviation of each

measurement.

Table 8.4: Standard Deviations for Different Polymer Sample Sizes

no. standard deviation
monomers 0ξ 1ξ 2ξ 3ξ 4ξ

1500 0.00051 0.00007 0.00042 0.00058 0.00053
1250 0.00049 0.00007 0.00041 0.00058 0.00059
1000 0.00064 0.00008 0.00055 0.00077 0.00077
750 0.00067 0.00009 0.00058 0.00083 0.00088
500 0.00074 0.00010 0.00063 0.00088 0.00094
250 0.00108 0.00015 0.00091 0.00128 0.00131

The standard deviations do not provide much information about how the measure-

71

1500 Monomers

F
re

qu
en

cy

0.742 0.743 0.744 0.745 0.746 0.747

0
5

10
15

20

1250 Monomers

F
re

qu
en

cy

0.742 0.743 0.744 0.745 0.746 0.747

0
5

10
15

20

1000 Monomers

F
re

qu
en

cy

0.742 0.743 0.744 0.745 0.746 0.747

0
5

10
15

20

750 Monomers

F
re

qu
en

cy

0.742 0.743 0.744 0.745 0.746 0.747

0
5

10
15

20

500 Monomers

F
re

qu
en

cy

0.742 0.743 0.744 0.745 0.746 0.747

0
5

10
15

20

250 Monomers

F
re

qu
en

cy

0.742 0.743 0.744 0.745 0.746 0.747

0
5

10
15

20

Figure 8.9: Histograms for 0ξ with Different Polymer Sizes

72

ment error effects the predicted properties. The effect depends on the final QSPRs.

The QSPRs used in this work are linear, so it is a simple matter to use the model

coefficients to estimate an amount of error that could be expected. Although the de-

scriptors used in the size study are not used in the final QSPRs, the largest coefficient

for a connectivity index in a tensile strength model is less that 250. This coefficient can

be used to get a rough approximation of the effect of measurement error. The effect

of measurement error in 0ξ would be expected to be less than 0.26 MPa for a polymer

sample with 1500 monomers in the core, and less than 0.54 MPa for a polymer sample

with 250 monomers in the core. Typical tensile strengths are around 60 MPa.

The polymer samples in this project used a 1500 monomer core. In general, the

experimental data can be studied to determine the effect of sample size on the property

estimates. Error in the property calculations should be weighed against computation

time in the optimization routine.

8.4 Statistical Analysis

The polymer designer program was used to calculate descriptors for all of the poly-

mers. The descriptors and experimental properties were exported to the R statistics

program (R Development Core Team, 2007). This section describes the statistical

analysis used to develop QSPRs. Since the analysis is the same for each property, the

development of a QSPR for tensile strength will be followed in detail, and the results

for the other properties will be presented in less detail.

In this case, the polymers are only cured at two water contents, so water content

is like a binary variable. Further data will be collected at additional water contents

by the Spencer research group in future work. Here water content is treated like any

other continuous variable. Combining the data at different water contents may cause

some problems as will be noted.

73

The first task is to select an initial set of structural descriptors. A subset of these

descriptors will be used in the final QSPRs. Table 8.5 provides a list of descriptors

considered.

Table 8.5: Initial Descriptor Set

Descriptors symbols
Initial Resin Water Content WC

Degree of Conversion DC
Degree of Crosslinking CD

Degree of Crosslinking at 100% DC CD100

Aromatic Atom Ratio Naro

Side Chain Atom Ratio Ns

Crosslink Atom Ratio Nc

Backbone Atom Ratio Nb

Unreacted Monomer Connectivity Indices 0ξm, 1ξm, 2ξm, 3ξm, 0ξvm, 1ξvm, 2ξvm, 3ξvm
Polymer Connectivity Indices 0ξ, 1ξ, 2ξ, 3ξ, 0ξv, 1ξv, 2ξv, 3ξv

Backbone Connectivity Indices 0ξb, 1ξb, 2ξb, 3ξb, 0ξvb , 1ξvb , 2ξvb , 3ξvb
Side Chain Connectivity Indices 0ξs, 1ξs, 2ξs, 3ξs, 0ξvs , 1ξvs , 2ξvs , 3ξvs

Crosslink Connectivity Indices 0ξc, 1ξc, 2ξc, 3ξc, 0ξvc , 1ξvc , 2ξvc , 3ξvc

Some of the descriptors can be discarded right away. The polymer connectivity

indices were calculated for the polymers as a whole, for the backbone, for side chains,

and for crosslinks. The low order connectivity indices for the backbone are the same

for all polymers and the higher order connectivity indices very similar. The polymers

are all polymethacrylates so the backbones are just a chain of carbon atoms in similar

environments. The fraction of backbone, side chain, and crosslink atoms should add

up to one, so the backbone atom ratio can be dropped. Since knowing the connectivity

indices of all the polymer sections almost duplicates the information in the overall

polymer connectivity indices, those can be removed as well.

One may suspect that since only one monomer is varied between formulations, the

monomer connectivity indices correlate to the crosslink and side chain connectivity

in the polymers. That is not the case, as can be seen in Table 8.6 which shows the

correlation matrix for the connectivity indices.

74

Table 8.6: Connectivity Index Correlation Matrix

0ξm
1ξm

2ξm
3ξm

0ξs
1ξs

2ξs
3ξs

0ξc
1ξc

2ξc
3ξc

0ξm 1.00
1ξm -0.73 1.00
2ξm -0.16 -0.56 1.00
3ξm -0.45 -0.17 0.77 1.00
0ξs 0.72 -0.12 -0.68 -0.81 1.00
1ξs 0.08 0.61 -0.97 -0.68 0.67 1.00
2ξs -0.36 -0.37 0.96 0.80 -0.85 -0.96 1.00
3ξs -0.46 -0.21 0.85 0.91 -0.94 -0.84 0.94 1.00
0ξc -0.33 0.83 -0.79 -0.66 0.33 0.77 -0.66 -0.62 1.00
1ξc -0.42 0.88 -0.77 -0.32 0.16 0.80 -0.63 -0.42 0.83 1.00
2ξc -0.91 0.58 0.25 0.64 -0.79 -0.18 0.43 0.61 0.13 0.41 1.00
3ξc -0.88 0.44 0.42 0.75 -0.87 -0.35 0.59 0.74 -0.03 0.24 0.98 1.00

Pairwise plots of the property of interest and the descriptors can be used to find

any obvious relationships. The plots are better than the correlation matrix, because

polynomial or other simple mathematical relationships may be apparent from the plots;

for example, the relationship between tensile strength and a descriptor could appear to

be a parabola. Plots of tensile strength as a function of all the descriptors are shown

in Figures 8.10 through 8.14. The labels in the diagonal of the plot matrix are the axis

labels for each plot. The descriptor symbols are defined in Table 8.5.

Figures 8.10 and 8.11 seem to show a linear relationship between some of the

side chain connectivity indices and the tensile strength. Figure 8.14 shows that water

content lowers the tensile strength but increases degree of conversion. Generally an

increased degree of conversion would be associated with higher tensile strength, but

water acts as a plasticizer. Nothing in the plots seems to indicate there is a reason to

use polynomial regression or transform the variables in any other way.

Figure 8.15 shows a plot of tensile strength as a function of the best single descriptor

(2ξvs). The line appears to fit the data reasonably well. The points WA and WC seem

to have tensile strengths significantly higher than the prediction. This may be because

for some reason the water in those sample did not decrease the tensile strength as

75

0.81 0.83 0.85 0.28 0.31 0.34

4
0

6
0

0
.8

1
0
.8

4

0
.4

9
4

0
.5

0
2

0
.2

8
0
.3

1
0
.3

4

40 50 60 70 0.494 0.500 0.18 0.21 0.24

0
.1

8
0
.2

2

σ

0ξs

1ξs

2ξs

3ξs

Figure 8.10: Pairwise Plots of Tensile Strength and Simple Side Chain Connectivity
Indices

0.600 0.615 0.630 0.15 0.17

4
0

6
0

0
.6

0
0

0
.6

2
0

0
.3

2
6

0
.3

3
4

0
.1

5
0
.1

8

40 50 60 70 0.326 0.332 0.338 0.065 0.080 0.095

0
.0

6
5

0
.0

8
5

σ

1ξv
s

2ξv
s

3ξv
s

0ξv
s

Figure 8.11: Pairwise Plots of Tensile Strength and Valence Side Chain Connectivity
Indices

76

0.660 0.670 0.33 0.35

4
0

6
0

0
.6

6
0

0
.6

7
5

0
.4

6
0

0
.4

7
5

0
.3

3
0
.3

5

40 50 60 70 0.460 0.470 0.480 0.23 0.25 0.27

0
.2

3
0
.2

6

σ

0ξc

1ξc

2ξc

3ξc

Figure 8.12: Pairwise Plots of Tensile Strength and Simple Crosslink Connectivity
Indices

0.545 0.560 0.196 0.202 0.208

4
0

6
0

0
.5

4
5

0
.5

6
5

0
.3

3
0

0
.3

4
0

0
.1

9
6

0
.2

0
4

40 50 60 70 0.330 0.340 0.118 0.124 0.130

0
.1

1
8

0
.1

2
6

σ

0ξv
c

2ξv
c

3ξv
c

1ξv
c

Figure 8.13: Pairwise Plots of Tensile Strength and Valence Crosslink Connectivity
Indices

77

0.25 0.35 65 80 95 0.25 0.35 0.45

4
0

6
0

0
.2

5

0
.5

0
0
.6

5

6
5

8
0

9
5

0
.1

5
0
.3

5

0
.2

5
0
.4

0

40 60 0.50 0.60 0.15 0.30 0 4 8

0
4

8

σ

Nc

Ns

DC

CD100

CD

WC

Figure 8.14: Pairwise Plots of Tensile Strength and Other Descriptors

much. The plot in Figure 8.15 also shows a problem correlating the data with and

without water together. The water increases the degree of conversion and the crosslink

density (both of which should increase tensile strength), but water acts as a plasticizer,

decreasing tensile strength. The side chain groups in the polymer consist mostly of

HEMA and bisGMA where only one functional group reacts. The addition of water

shifts the balance to more HEMA side chains and lowers 2ξvs . It is likely that the

appearance of the ability of 2ξvs to predict tensile strength across water contents is a

coincidence.

Multiple linear regression is used to make the QSPRs, but selecting the best subset

of descriptors is often a difficult problem. There can be a very large number of possible

combinations of descriptors, and to select the best combination, they may all need to be

tried. Forward selection is often used to select descriptors, where the most significant

descriptors are added to a model one at a time. Similarly, backward elimination can

be used (Draper and Smith, 1966).

Forward selection and backward elimination do not necessarily provide the best

result, and performing all possible regressions to find the best is not always possible.

78

0.14 0.15 0.16 0.17 0.18 0.19

4
0

5
0

6
0

7
0

QA

QB

QC

QD

QE

QF

QG

WA

WB

WC

WD

WE

WF

WG

2ξv
s

T
en

si
le

St
re

ng
th

(M
P

a)

Figure 8.15: Tensile Strength as a Function of 2ξvs

79

In this case, it is possible to try all combinations of descriptors up to a certain size

using a branch-and-bound technique to implicitly enumerate all possibilities. A package

called LEAPS is available to do this (Lumley, 2004).

There are twenty-two possible descriptors, so there are 4,194,304 possible combi-

nations of descriptors. There are only 14 data points, so there is no way to have a

22 variable model. If only models containing up to 9 variables are considered, there

are 1,097,789 possible combinations. A computer can test that many possibilities in a

reasonable amount of time. Table 8.7 shows the descriptors included in the best models

for tensile strength and their R2 values.

Table 8.7: Best Combinations of Descriptors for Tensile Strength and Their R2

No. Desc. 1 2 3 4 5 6 7 8 9 R2 (14 points)
1 2ξvs 0.616
2 CD Ns 0.741
3 WC CD 1ξc 0.872
4 CD Naro

2ξvc
3ξvc 0.921

5 WC DC CD Naro
3ξc 0.933

6 Naro
0ξs

3ξvs
0ξc

0ξvc
3ξvc 0.966

7 Naro
1ξs

2ξs
3ξvs

1ξc
1ξvc

3ξvc 0.984
8 CD100 Naro Nc

2ξs
3ξs

0ξvc
1ξvc

2ξvc 0.995
9 CD100 Naro Nc

0ξs
2ξvs

3ξvs
1ξc

0ξvc
2ξvc 0.9997

It is important to check the statistical significance of the model coefficients and the

model itself. Using a 95% confidence level, all of the models are statistically significant,

and only the five-variable model has a parameter that is not statistically significant.

It is also clear from looking at the included variables that forward selection would not

have provided the best model.

To decide which model is best, it is possible to look at R2, but R2 always increases

as more parameters are added. If a model contains too many parameters, it will over-

fit the data, and do a poor job of predicting properties for new polymers. K-fold

cross-validation is used to get some idea of the predictive value of the models.

80

The cross-validation procedure starts by randomly splitting the data into three sets

to be omitted in turn. The size of the sets is as close to equal as possible. Since there

are 14 data points total, the sets contain 5, 5, and 4 data points. Three models are

created the first with the data omitting the first set of five points, and so on. The error

is calculated for the points left out, and used to calculate Q2. Q2 is comparable to R2,

but it is calculated from the points left out of the model. It is possible for Q2 to be

negative if the predictions are worse than just using the mean of the model data as the

prediction. Since the data is split up randomly, Q2 may be different every time it is

calculated. To get a fair representation, Q2 was calculated 500 times for each model;

the results are shown in Table 8.8.

Table 8.8: Q2 Values for 3-fold Cross-Validation

Q2 500 Measurements
no. desc. minimum first quartile median mean third quartile maximum

7 -17.00 0.57 0.74 0.57 0.85 0.95
6 -5.39 0.67 0.78 0.67 0.84 0.94
5 -4.28 0.65 0.76 0.64 0.82 0.92
4 -5.21 0.72 0.79 0.73 0.84 0.91
3 -1.14 0.69 0.75 0.71 0.81 0.88

It is not clear from Table 8.8 which is the best model; they all seem to have a similar

median. Some of the Q2 values are very bad in the models with more parameters, which

pulls down the mean. The negative Q2’s probably result when most or all of the data

to be left out in one set is cured with water and in another set cured without water.

This would be like making a QSPR using only data for polymer cured without water,

and then trying to use it to predict for properties of polymers cured with water. Since

the data set is small, the three predictor model is selected to be the best.

The large representative section of polymer is used to calculate the connectivity

indices, but the other descriptors can be calculated without it. The next question is

whether a suitable QSPR can be created using just the unreacted monomer connectivity

81

indices. In that case, the calculations would be faster and the optimization routine

could be more efficient. Table 8.9 provides a summary of the best models using the

monomer connectivity indices.

Table 8.9: Best Tensile Strength Models Based on Monomer Connectivity

Q2 500 Measurements
no. desc. first quartile median mean third quartile R2

6 0.34 0.55 -0.08 0.70 0.93
5 0.60 0.71 0.66 0.78 0.93
4 0.64 0.71 0.67 0.77 0.89
3 0.68 0.77 0.72 0.82 0.88

There is very little difference between the three descriptor QSPRs using the polymer

or the monomer connectivity indices. Since the monomer-based QSPR takes less time

to calculate and is at least as good as the polymer-based QSPR, it is clearly the best

choice for the optimization routine.

Following same procedure outlined for tensile strength, QSPRs were created for

initial polymerization rate (r0), glass transition temperature (Tg), and degree of con-

version (DC). Table 8.10 lists the QSPRs. No QSPRs were found for the remaining

properties.

Table 8.10: QSPR Summary

QSPR R2

DC = −66.06 + 1.5654206 ·WC + 479.8702353 · 1ξv
m − 120.4479529 · 3ξv

m 0.97
σ = 15.42− 308.907928 · CD + 194.831990 · CD100 + 242.095661 · 2ξv

m 0.88
Tg = 674.15 + 0.61089833 ·DC− 2190.46918205 · 1ξv

m + 401.65206265 · 2ξv
m 0.85

r0 = −528.95− 151.20634607 · CD100 + 831.35424142 · 0ξm + 0.09496638 ·MWm 0.83

The data set is small, so the QSPRs developed here are probably of limited scope,

but they serve to illustrate the CMD process.

82

8.5 Optimization

Tabu search is used in this project to find a list of candidate monomers that are

predicted to have favorable properties. The resins for new polymers are formulated as

in the experimental data, with the new monomer comprising 25 wt% of the resin.

The first step in the optimization process is to determine the objective function.

The properties are weighted using their magnitude in the objective function. This is a

reasonable starting point, but as more properties are added and more data is collected

it may be useful to weight them additionally by relative importance. With the target

properties, the objective function may be written as Equation 8.1. Since the solution

method used is Tabu search, it is not necessary to make the function linear, and squared

terms are used to avoid cancellation of errors.

f =
(
σ − 80

80

)2

+
(
r0 − 130

130

)2

+
(
Tg − 120

120

)2

+
(

DC− 100
100

)2

(8.1)

The constraints for the optimization problem limit solutions to feasible structures

for methacrylate monomers. Since crosslinking is desired, the monomers are also re-

quired to have at least two methacrylate groups. All of the constraints are handled in

the procedure to build new monomers, so they do not need to be explicitly formulated.

The Tabu search algorithm takes advantage of the data structures already available

in the polymer designer software. The new monomers are built from a set of groups.

Changes are made by inserting, deleting or changing chain groups. Inserting and delet-

ing chain groups only lengthens or shortens monomers; the structure is still feasible.

Changing the type of chain group also results in a feasible structure. The groups are

put together using a polymer graph, and the full graph becomes the monomer (see

Chapter 3). Figure 8.16 shows the groups used. The groups were selected to produce

monomers similar to those in the experimental data.

83

XxXx

CH3

CH3 Xx

OH

Xx

XxXx
CH3

XxXx

OXx Xx Xx Xx N

O

XxXx
Xx Xx

O

Xx

XxXx

CH3

CH2

Xx

O

O

chain 1 chain 2 chain 3 chain 4

chain 5 chain 6 chain 7 chain 8

branch 1 terminal 1

Figure 8.16: Groups Used to Build Monomers in Tabu Search

New solutions are generated by inserting, deleting, or changing chain groups. The

level of branching is changed by setting the number of branch groups in the initial

solution; this eliminates the possibility of large changes in the solutions when branching

groups are deleted.

8.6 Results

A list of candidate structures was generated by running the Tabu search algo-

rithm several times using different starting structures. Three representative resulting

structures are shown in Figure 8.17. The first candidate monomer was obtained using

bisGMA as the starting structure. The second candidate was obtained using random

starting structures with two methacrylate groups. The third candidate structure was

obtained using random starting structures with three methacrylate groups. Tabu search

took approximately one minute to run from each new starting point. The search was

terminated after 300 non-improving iterations.

The objective function values and properties of polymers made with the candidate

84

O

O O

O

O

O

O

O

O

O

O

O
O

O

OH

O

O

O

O

candidate 1

candidate 2

candidate 3

Figure 8.17: Candidate Monomer Structures

Table 8.11: Predicted Candidate Polymer Properties

Monomer DC (%) σ (MPa) Tg (◦C) r0 (mol/l · s) objective
target 100.0 80 120 130 0.0000

bisGMA 69.3 71 119 96 0.0995
candidate 1 78.0 82 119 125 0.0305
candidate 2 80.4 86 115 130 0.0296
candidate 3 76.3 75 112 129 0.0426

monomer as the third monomer in the formulation are given in Table 8.11. The proper-

ties for the ideal polymer and the HEMA/bisGMA polymer are given for comparison.

All of the candidate monomers in Table 8.11 offer a significant improvement over

the bisGMA control. Given the structural limitations, it seems not to be possible

to obtain degrees of conversion near 100%, so the structural descriptors can provide

limits on the QSPRs which are not otherwise obvious. One may expect from the linear

equation for degree of conversion that values of over 100% or negative values could be

predicted; those values would obviously make no physical sense.

85

8.7 Conclusion

Although significantly more data is needed to generate new QSPRs, this example

shows that the CMD methodology can be applied to crosslinked polymers. More data

must be collected and a wider variety of descriptors need to be examined. The results

do look promising and suggest that the type of structure description used can be

successfully applied to property prediction for crosslinked polymer networks. Tabu

search also appears to be effective as an optimization method for this application.

The successful result of the demonstration is encouraging and indicates further

work in this area has a high probability of success.

The next chapter provides the overall conclusions and recommendations for this

work based on the design formulation implemented for polymeric dental materials.

86

Chapter 9

Conclusions and

Recommendations

9.1 Conclusions

The dental polymer example in the previous chapter demonstrates that the new

data structure for crosslinked polymers is capable of storing the necessary structural

information and is efficient for the calculation of topological descriptors. The core

and buffer method allows a relatively small representative section of polymer to be

used for descriptor calculations without the severed polymer chain ends affecting the

calculation. The QSPRs developed and cross-validated in the example strongly suggest

that QSPRs can be developed for crosslinked polymers, an area in which there has been

little previous research.

The suitability of Tabu search as an optimization routine for this new area of molec-

ular design is also demonstrated. Tabu search avoids the need for rigorous mathematical

formulation inherent in deterministic methods, allowing for considerable flexibility in

the molecular design process. Tabu search and the formulation used in this work also

87

help manage the combinatorial increase in problem size when designing large molecules.

The combinatorial design methodology developed for this project is shown to be

a useful platform for numerical experimentation in the design of crosslinked polymers.

The implementation of the crosslinked polymer data structure allows rapid calculation

of numerous topological descriptors. The software can also be used for many other

types of molecules, and provides much flexibility in the design methodology. The

availability of the data structures and descriptor calculation functions greatly expedite

development of optimization techniques for molecular design.

Finally, the example demonstrates that this methodology is an effective tool for the

design of crosslinked polymeric materials such as dental materials, and is a promising

area for continuing research.

9.2 Recommendations

The dental adhesive design project is ongoing, and more experimental data is cur-

rently being collected by the Spencer research group. The new data will allow for

improved quantitative structure property relations and provide more details about the

structure of the polymer network. Several further studies can be performed as new

data is collected.

An extensive review of the polymer designer source code should be conducted to

ensure that calculations are accurate, and that any omissions are well documented and

produce appropriate error messages.

For dental polymers, specific target properties need to be set, and the weighting of

the properties in the objective function needs to be carefully considered. A database

of commercially available methacrylate monomers should then be compiled. Using

available data, the properties of polymers made from all the monomers in the database

88

can be estimated. Polymer designer can store the structures, and do the property

estimate calculations. Since the monomers are readily available, properties can be

measured for both good and bad monomers without the need for time consuming

synthesis. This will provide a good means of testing and improving the QSPRs, while

still finding improved materials.

Additional topological descriptors of molecular structure should be studied. Nu-

merous descriptors are available in the literature, and the expanded data set will allow

for a study to find which descriptors work best for predicting properties. The facilities

of Polymer Designer can be used to perform the numerical experiments with different

types of descriptors.

More complex QSPRs should be examined. Transformations of the descriptors can

also be considered in the regression, but there is currently not sufficient data to do

so. Molecular descriptors are useful for small molecules and linear polymers, but they

also miss the details of a large polymer network. Large scale descriptors for polymer

networks should be developed. These descriptors could be calculated on the polymer

graphs with monomer vertices. The process could start using descriptors analogous to

existing molecular descriptors.

Development of large scale polymer network descriptors may require a more accu-

rate picture of the network structure. New methods should be developed to generate

a more accurate representative section of polymer. As additional experimental data is

collected, it should be analyzed to determine if it can provide details of the molecular

structure or provide evidence to the accuracy of structures generated for the purpose

of descriptor calculation.

As more experiments are performed, the data should be used to validate and update

the QSPRs. Eventually, as the results of the molecular design process are synthesized

and tested, the results will be fed back into the modeling process creating a loop that

89

will lead to rapid development of improved polymers.

90

Nomenclature

A adjacency matrix

A number of non-hydrogen atoms in a molecule

BFS breadth first search

BisGMA 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl]

BisEMA bisphenol A polyethylene glycol diether dimethacrylate

CD crosslink density

CD100 crosslink density at 100% conversion

CMD computational molecular design

DC degree of conversion, fraction of carbon-carbon double bonds reacted

DFS depth first search

Fi fraction of component i

HEMA 2-hydroxyethly methacrylate

LEAPS a software package to select the best subset of predictors

Pi,targ target value for property i

Pi,est estimated value for property i

MPE 1,1,1-tri-[4-(methacryloxyethylaminocarbonyloxy)-phenyl]ethane

N number of non-hydrogen atoms in a molecule

Naro number of atoms in aromatic rings

Nc number of atoms in crosslinks

NH number of hydrogen atoms attached to an atom

91

ni Tabu search parameter, number of non-improving iterations

nn Tabu search parameter, number of neighbors to generate

Nrv number of reacted vinyl groups

Ns number of side chain atoms

nt Tabu search parameter, number of solutions in the Tabu list

2P number of length 2 paths in a molecule

PD the Polymer Designer software

PEGDMA polyethylene glycol dimethacrylate

QSPR quantitative structure property relation

R statistical software package

r0 initial reaction rate

R2 multiple correlation coefficient

si a scaling factor for the properties in the objective function

Tg glass transition temperature

TEGDMA triethyleneglycol dimethacrylate

TMPEDMA trimethylol-propane mono allyl ether dimethacrylate

UDMA urethane dimethacrylate

UID unique identifier, an integer

WC water content of resin (wt%)

wt% weight percent

Xx dummy atom

ȳ average of yi

ŷ predicted value of y

Z number of electrons around an atom

Zv number of valence electrons around an atom

δi value used in the calculation of simple connectivity indices for atom i

δvi value used in the calculation of valance connectivity indices for atom i

2κ path index

92

2κα path index adjusted for atom size

σ tensile strength

nχ size dependent nth-order simple connectivity index

nχv size dependent nth-order valence connectivity index

nξ size independent nth-order simple connectivity index

nξv size independent nth-order valence connectivity index

93

References

Allcock, H. R., “Rational design and synthesis of new polymeric materials,” Science,

255, 1106 (1992).

Bates, D. M. and D. G. Watts, Nonlinear Regression Analysis and its Applications,

John Wiley & Sons, New York (1988).

Bernardo, M., H. Luis, M. D. Martin, B. G. Leroux, T. Rue, J. Leitão, and T. A.

DeRouen, “Survival and reasons for failure of amalgam versus composite posterior

restorations placed in a randomized clinical trial,” Journal of the American Dental

Association, 138, 775 (2007).

Bicerano, J., Prediction of Polymer Properties, 3rd edition, Marcel Dekker, Inc. (2002).

Bicerano, J., R. L. Sammler, C. J. Carrier, and J. T. Seitz, “Correlation between glass

transition temperature and chain structure for randomly crosslinked high polymers,”

Journal of Polymer Science, 34, 2247 (1996).

Camarda, K. V. and C. D. Maranas, “Optimization in polymer design using connec-

tivity indices,” Industrial Engineering and Chemistry Research, 38, 1884 (1999).

d’Anterroches, L. and R. Gani, “Group contribution based process flowsheet synthesis

design and medelling,” Fluid Phase Equilibria, 228, 141 (2005).

de Werra, D. and A. Hertz, “Tabu Search techniques,” OR Spektrum, 11, 131 (1989).

94

Draper, N. R. and H. Smith, Applied Regression Analysis, John Wiley and Sons, New

York (1966).

Efron, B. and R. J. Tibshirani, An Introduction to the Bootstrap, volume 57 of Mono-

graphs on Statistics and Applied Probability , Chapman and Hall, New York (1993).

Finer, Y. and J. P. Santerre, “The influence of resin chemistry on a dental composites

biodegradation,” Journal of Biomedical Materials Research, Part A, 69A(2), 233

(2004).

Flory, P. L., “Molecular size distribution in three dimensional polymers. I. Gelation,”

Journal of the American Chemical Society , 63, 3083 (1941).

Fredenslund, A., R. L. Jones, and J. M. Prausnitz, “Group-contribution estimation of

activity coefficients in nonideal liquid mixtures,” AIChE Journal , 21, 1086 (1975).

Gani, R., B. Nielsen, and A. Fredenslund, “A group contribution approach to computer-

aided molecular design,” AIChE Journal , 37(9), 1318 (1991).

Gibbons, A., Algorithmic Graph Theory , Cambridge University Press (1985).

Glover, F., “Artificial intelligence, heuristic frameworks and Tabu Search,” Managerial

and Decision Economics, 11, 365 (1990a).

Glover, F., “Tabu Search: A tutorial,” Interfaces, 20, 74 (1990b).

González, H. E., J. Abildskov, and R. Gani, “Computer-aided framework for pure

component properties and phase equilibria prediction for organic systems,” Fluid

Phase Equilibria, 261, 199 (2007).

Joback, K. G. and R. C. Reid, “Estimation of pure-component properties from group-

contributions,” Chemical Engineering Communications, 57, 233 (1987).

Karunanithi, A. T., L. E. K. Achenie, and R. Gani, “A new decomposition-based

computer-aided molecular/mixture design methodology for the design of optimal

95

solvents and solvent mixtures,” Industrial Engineering and Chemistry Research, 44,

4785 (2005).

Kier, L. B., “Distinguishing atom differences in a molecular grapth shape index,” Quan-

titative Structure-Activity Relations, 5, 7 (1986).

Kier, L. B., “Index of molecular shape from chemical graphs,” Medicinal Research

Reviews, 7, 417 (1987).

Kier, L. B. and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis,

Research Studies Press, Letchworth, England (1986).

Lin, B., S. Chavali, K. V. Camarda, and D. C. Miller, “Computer-aided molecular

design using Tabu Search,” Computers and Chemical Engineering , 29, 337 (2005).

Lumley, T., The leaps Package, URL cran.r-project.org/doc/packages/leaps.pdf

(2004).

Maranas, C. D., “Optimal computer-aided molecular design: a polymer design case

study,” Industrial Engineering and Chemistry Research, 35, 3403 (1996).

MDL Information Systems, CTFile Formats, Elsevier, Elsevier MDL, 14600 Catalina

St., San Leandro, CA 94577 (2005).

Mevik, B. and R. Wehrens, “The pls package: principal component and partial least

squares regression in R,” Journal of Statistical Software, 18(2) (2007).

Murray, P. E., L. J. Windsor, T. W. Smyth, A. A. Hafez, and C. F. Cox, “Analysis of

Pulpal Reactions to Restorative Procedures, Materials, Pulp Capping, and Future

Therapies,” Critical Reviews in Oral Biology and Medicine, 13(6), 509 (2002).

Park, J., Q. Ye, E. M. Topp, E. L. Kostoryz, Y. Wang, S. L. Kieweg, and P. Spencer,

“Preparation and properties of novel dentin adhesives with esterase resistance,” Jour-

nal of Applied Polymer Science, 107, 3588 (2007).

96

Quan, N. T., “The prediction sum of squares as a general measure for regression diag-

nostics,” Journal of Business & Economic Statistics, 6, 501 (1988).

R Development Core Team, R: A Language and Environment for Statistical

Computing , R Foundation for Statistical Computing, Vienna, Austria, URL

http://www.R-project.org (2007).

Randić, M., “On characterization of molecular branching,” Journal of the American

Chemical Society , 97(23), 6609 (1975).

Rouvray, D. H., “Predicting chemistry from topology,” Scientific American, 255(3),

40 (1986).

Sahinidis, N. V., M. Tawarmalani, and M. Yu, “Design of alternative refrigerants via

global optimization,” AIChE Journal , 49, 1761 (2003).

SQLite, “SQLite,” http://www.sqlite.org/ (2008).

Sundaram, A. and V. Venkatasubramanian, “Parametric sensitivity and search-space

characterization studies of genetic algorithms for computer-aided polymer design,”

Journal of Chemical Information and Computer Sciences, 38, 1177 (1998).

Todeschini, R. and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH,

Weinheim (2000).

Trolltech, “Qt Cross-Platform Application Framework,”

http://trolltech.com/products/qt (2008).

Ullmann, J. R., “An algorithm for subgraph isomorphism,” Journal of the Association

of Computing Machinery , 23(1), 31 (1976).

Van Krevelen, D. W., Properties of Polymers, 3rd edition, Elsevier (1997).

Venkatasubramanian, V., “Computer-aided molecular design using genetic algorithms,”

Computers & Chemical Engineering , 18, 833 (1994).

97

West, D. B., Introduction to Graph Theory , 2nd edition, Prentice Hall, Upper Saddle

River (2001).

Wiener, H., “Correlation of heats of isomerization, and differences in heats of vaporiza-

tion of isomers among the paraffin hydrocarbons,” Journal of the American Chemical

Society , 69, 2636 (1947a).

Wiener, H., “Structural determination of paraffin boiling points,” Journal of the Amer-

ican Chemical Society , 69, 17 (1947b).

Ye, Q., P. Spencer, Y. Wang, and A. Misra, “Relationship of Solvent to the Photopoly-

merization Process, Properties, and Structure in Model Dentin Adhesives,” Journal

of Biomaterials Research Part A, 80, 342 (2007a).

Ye, Q., Y. Wang, Willians, and P. Spencer, “Characterization of photopolymerization of

dentin adhesives as a function of light source and irradiance,” Journal of Biomaterials

Research Part B , 80, 440 (2007b).

98

Appendix A

Polymer Designer Manual

This appendix describes in detail how to use the Polymer Designer (PD) program.

These instructions may be most helpful while running the program. Appendix C pro-

vides information about using the existing functions of PD to extend its capability.

A.1 Installing PD

PD should work under Linux, UNIX, OS X, and Windows, but it has only been

tested in Linux. The QT, SQLite3, and OpenGL development files and a C++ compiler

must be available to compile PD. The QT build system is used to simplify the process

of compiling PD. Instructions for Linux are provided here.

In the pd2 directory type:

qmake -project

This command will make a project file that qmake will use to build a makefile.

Since PD uses OpenGL and SQLite3, some small changes must be made to the project

file. Edit the pd2.pro file, and add the following lines near the beginning.

99

LIBS += -lsqlite3

QT += opengl xml

If there may be a need to run pd2 in a a debugger, also add the following line.

CONFIG += debug

The next step is to build the makefile using the following command in the pd2

directory.

qmake

The next step is compile the project with the following command.

make

This will build an executable called “pd2.” The executable will stand alone and

can be stored anywhere independent of the source files.

PD should be run from a terminal program. PD outputs some diagnostic and error

messages to the standard output, and these will be lost if the program is run by clicking

on it in a file manager.

A.2 Opening a Database

The first thing to do upon running PD is to open a new or existing database. This

can be done from the file menu. Databases are stored entirely in one file, so they are

easy to backup. Changes made to data are committed to the database when an update

button is pressed, so there is no need to save. Changes should be made with care and

the database files should be backed up, as PD currently has no undo option. A different

database can be opened at anytime, but only one database can be open at a time.

100

A.3 Adding and Editing Monomers

Monomers can refer to actual monomers used to build polymers, or the monomer

facilities may also be used for molecular design studies with other small molecules.

Adding and editing monomers can be done from the “Molecules” menu. Adding

or editing a monomer will bring up the “Structure Data” window. If editing monomers,

the “Data Browser” window will appear fist allowing you to select from existing monomers

(Figure A.1). To see a list of all monomers, just click the search button. SQL state-

ments can also be used to search for a specific set of monomers. Fields that may be

used in a query are: name, desc (description), type, cite key, cite notes, and notes.

Figure A.1: Monomer Data Browser

The structure data window contains a form for basic data about a molecule under

the information tab, as seen in Figure A.2.

The structure tab contains the chemical structure editor. The structure editor

allows molecules to be easily viewed and edited using the mouse (Figure A.3).

101

Figure A.2: Chemical Structure Editor

102

Figure A.3: Monomer Data Entry Form

103

Editing a molecule is accomplished using the mouse and the graph editor toolbox.

The toolbox consists of several tabs. The important tools and how to use them are

described here. If the toolbox is not displayed, press the ’t’ key with the graph editor

selected. Figure A.4 shows the mouse tab of the toolbox.

Figure A.4: Toolbox – Mouse Tab

1. This button activates the selection tool. While using the selection tool, a vertex

or edge can be selected by clicking on it. This tool can also be used to edit vertex

and edge properties by double clicking on them. The vertex and edge editing

dialog boxes will be described later.

2. This button activates the vertex tool. While using the vertex tool a new vertex

will be created by clicking the mouse in the desired location. The vertex is added

when the mouse button is pressed down. While the button is held down, the

104

vertex may be dragged to the desired location. Dragging with snapping enabled

moves the vertex on the snap grid.

3. This button activates the vertex/edge tool. This tool draws both a vertex and an

edge. First select a vertex then select the location for the new vertex. An edge

will be created automatically. If, instead of clicking an empty space, an existing

vertex is selected, this tool draws an edge between the existing vertices.

4. This button activates the edge tool. This tool can be used to add an edge between

existing vertices.

5. This button activates the delete tool. While this tool is active, clicking a vertex

or edge will delete it. If a vertex is deleted, all edges with that vertex as an

endpoint will be deleted too.

6. This button activates the move mode. While this mode is active, vertices can be

dragged to new positions.

7. This button activates the zoom mode. To zoom in click and drag right. To zoom

out click and drag left.

8. This button activates the pan mode. To pan, click and drag.

9. This button activates the rotate about the z−axis mode.

10. This button activates the 3D view mode. Although editing in 3D is not imple-

mented in PD, some molecules that are imported may have 3D coordinates.

11. This button activates the 3D pan mode.

12. This button activates the 3D rotate mode.

13. This button translates the molecule so that the center is at (0, 0, 0).

105

14. This button activates the hammer. Edges can be bent one way by left-clicking

and the other by right-clicking. This is useful if a graph has overlapping edges.

Molecules generally should not have multiple edges between the same two vertices.

15. This number is missing.

16. This check box activates the chain edges mode. In vertex/edge or edge mode this

allows a chain of atoms and bonds to be drawn quickly.

17. This activates snap mode. The snap to grid option forces new or moved vertices

to snap to a fixed rectangular grid when they are dragged. The angle option forces

new or moved vertices into configuration where an edge between the current and

previously selected vertex is a one of a certain set of angles. When used with a

fixed distance between the vertices, the angle snap provides a nice way to draw

standard looking molecule drawings.

18. This button clears the edge and vertex highlighting that is drawn by some algo-

rithm tests.

The graph tab of the toolbox is shown in Figure A.5. The graph tab contains

some operations that apply to the whole graph. The import and export buttons allow

molecules to be read and saved as mol- or mol2-files. The native XML format of

PD2 can also be read and saved. The clear button erases the entire graph. The graph

operations button can contain functions that do things to the graph; it does nothing for

molecules. The graph information button gives some basic graph information about

the graph such as, the number of vertices and the number of edges. The algorithm

test button can run some of the graph algorithms on the current graph for debugging

purposes.

The display tab in the toolbox allows various information about atoms and vertices

to be displayed on the graph. The settings tabs allows the snap-grid, zoom, pan, and

rotate settings to be edited.

106

Figure A.5: Toolbox – Graph Tab

The vertex and bond editing dialog boxes are shown in Figures A.6 and A.7. These

can be accessed by double-clicking an atom or bond with the selection tool. The atom

type can be edited using the symbol or atomic number box; the other box will update

automatically.

The default atom and bond type can be changed using the periodic table dialog

box shown in Figure A.8. The periodic table can be accessed by pressing the ’p’ key

in the graph editor.

Once a monomer structure and data are properly entered, the insert or update

button at the bottom of the structure editor will insert or update the record. The

structure window retains the information the next time it is opened, which is useful

when adding many similar structures.

An SDL file is another common format for storing molecular structures. An SDL

file contains several mol-files. A set of molecules can be imported from an SDL file by

choosing import SDL from the molecules menu.

107

Figure A.6: Atom Properties Form

108

Figure A.7: Bond Properties Form

Figure A.8: Periodic Table Dialog Box

109

A.4 Adding and Editing Polymers

The graph editor and molecule selector are generic and used for both polymers and

monomers. This section describes only the portions unique to polymers. Section A.3

should be read first. Monomer structures are needed to build a polymer, so all required

monomer structures should be stored before adding a polymer.

There are two ways to create a polymer: manually or automatically. First, manual

creation will be discussed.

A.4.1 Manual Polymer Entry

The first step in entering a polymer structure is to select a list of monomers to use.

To do this, select the the graph tab of the graph editor toolbox. Then select the graph

operations button. A window like the one in Figure A.9 will appear. In the monomer

list frame, select the add monomer button to add a monomer. This will allow selection

from monomers in the database. The last step is to type a state vector into the newly

added monomer. The state vector represents the state of each functional group.

Once all of the monomers have been added, the polymer can be drawn just like a

monomer. The vertices and bonds must then be edited. Figure A.10 shows the vertex

editing dialog. The monomer type and whether a vertex is in the core or buffer, can

be set in this dialog.

Figure A.11 shows the bond editing dialog, which can be used to specify which

connector in the monomers the bond attaches to.

110

Figure A.9: Including Monomers

111

Figure A.10: Editing a Vertex

112

Figure A.11: Editing an Edge

113

A.4.2 Automatic Polymer Entry

For head-to-tail vinyl polymers, there is an automatic creation mechanism. Figure

A.12 shows an example form.

Figure A.12: Automatic Build Form

The monomers must again be selected. This time, use the add monomer button in

the build polymer frame. You can specify a weight percent for each monomer in the

resin. The number of monomers box is used to specify the number of monomers in the

114

core of the polymer sample. The number of buffer monomers box specifies the number

of monomers to be between the core and each cut chain. The degree of conversion box

specifies the degree of conversion in percent. Once all the information is filled in, the

make polymer button will automatically fill out the monomer list, and build a random

polymer tree.

A.5 Adding and Editing Property Descriptions

Molecule properties can also be stored in the database. Property descriptions can

be added and edited from the property menu. The actually property values can be

edited in the spreadsheet described in the next section. A simple form is used to edit

property descriptions (Figure A.13).

Figure A.13: Property Description Editor

115

A.6 The Property/Descriptor Spreadsheet

The properly/descriptor spreadsheet allows structural descriptors to be calculated

and property data to be edited. The spreadsheet can be exported as a tab-separated

text file, so it can be imported into a spreadsheet or statistics program. Figure A.14

shows an example spreadsheet.

Figure A.14: PD Spreadsheet

The spreadsheet works the same way with monomers and polymers, so the descrip-

tion here applies to both. First, select either the monomer or polymer tab in the main

PD window. Then click the “Select Columns” button; this will bring up a window that

allows data, properties, and descriptors to be selected, and displayed as columns on

the spreadsheet.

Next click on the “Add Rows” button; this allows selection of molecules to add

to the spreadsheet. Selection of multiple molecules is allowed using the shift and ctrl

116

keys. Rows can be removed from the sheet by selecting the row and clicking the “Delete

Rows” button.

To fill out the spreadsheet, click the “Calculate” button. The data and properties

will be filled in from the database, and the structural descriptors will be calculated. If

information for any cell is missing “NA” will be displayed in the cell.

To input or edit property vales, check the “Edit Properties” box. Edit the property

values by selecting a property cell and typing in the new value. Non-property cells

cannot be edited. Once the properties are edited edited as desired, click the “Update

DB” button.

To export the spreadsheet select “Export Spreadsheet” from the file menu.

A.7 Molecular Design

PD contains functions for optimization. For the polymer design project, the molec-

ular design routine was started from the algorithm test section of the graph editor and

results were output to the terminal. The monomer structures were saved as xml files.

117

Appendix B

Group Library

This appendix provides a list of chemical groups available in the group library.

The group library can be expanded, but the existing groups should not be changed,

because some methods depend on their unique identifiers. The group library has two

main purposes: identifying specific chemical structures (used in group contribution cal-

culations) and building chemical structures (used in molecular structure optimization).

In the following figures, each group is shown next to its unique integer identifier (UID).

The atoms labeled with numbers are dummy atoms that represent connections to other

groups, and the numbers are connection labels. The gray number next to each atom

is the atom UID, which can be used if a method calls for information about specific

atoms in a group. Some groups numbers are currently empty, and can be filled later.

118

#1 #2

#10 #11 #12

#13 #14 #15

1 CH3
2 1

1 2

3

45

6

1 2

3

45

6

C1

2

3

4

4

31

5

2

CH21 2
312

CH

2

31

1

3

42

1 CH2
2 1

1 CH
2 1

2
6

Figure B.1: Groups 0 to 15

#16 #17

#19 #20 #21

#22 #23 #24

#181 C
2 1 2

6
3

7

1 C
2 1

2
6

1 CH
2 1

1 C
2 1

2
6

F1
2 1

Cl1
2 1

Br1
2 1

I1
2 1

OH1
2 1

Figure B.2: Groups 16 to 24

#25 #26

#28 #29 #30

#31 #32 #33

#27
1 CH
3 1

EMPTY

O1 2
3 1 4

C

1 2

O

1
43

2

O
5

C

1 OH

O

1
36

5

C

1 O

O

1
36

5

2
7 O

2
1
1

NH21
2 1

NH1
2 1

2
3

Figure B.3: Groups 25 to 33

119

#34 #35

#37 #38 #39

#40 #41 #42

#36 1 NH
2 1

N

1 2

3

1
42

5

N1
2 1

2
3

N

1 O

O

1
34

2

SH1
2 1

S1
4 1

2
5

CH

1 2

1

32
C

1 2

3

1

32

4

C1
3 1

N
2

Figure B.4: Groups 34 to 42

120

Appendix C

Class Documentation

This appendix provides the source code of the Tabu search implementation used

in the dental polymer example, and an explanation, both in text and in augmented

comments. PD is written in C++. The Tabu search example uses functions of several

important classes. A complete function listings can be obtained from the class header

files.

In this implementation, a monomer is built from groups stored in the monomer

database. The groups are assembled into a monomer using a polymer graph. The

polymer graph here is used to store a monomer, since the way groups are assembled to

form a monomer is similar to the way monomers assembled to form a polymer.

C.1 Tabu Search Implementation

The header file for the Tabu search implementation, dp tabu 01.hpp is listed below.

The functions and variables will be described in detail afterward. The header file is

provided to give a complete listing of the Tabu search implementation.

#ifndef DP_TABU_01_HPP

121

#define DP_TABU_01_HPP

#include<list>
#include<vector>
#include<iostream>
#include"polymer.hpp"
#include"pd2_tabuSearch.hpp"

class dp_tabu_01{
public:
struct sol_data_t{ //a data structure for problem solutions
polymer mol_gen; //the monomer structure as groups
molecule mol; //the monomer structure as atoms
double ts; //estimated tensile strength
double DC; //estimated degree of conversion
double Tg2; //estimated glass transition temperature
double ipr; //estimated initial reaction rate
double CD; //crosslink density
double CD_100; //crosslink density at 100% DC
double mw; //monomer molecular weight

};
private:
pd2_tabuSearch ts;
std::list<pd2_tabuSearch::solution_t*> neighbor_list;
std::list<pd2_tabuSearch::solution_t*> tabu_list;
std::vector<pd2_tabuSearch::solution_t> tabu_vec;
std::vector<pd2_tabuSearch::solution_t> neighbor_vec;
std::vector<sol_data_t> tabuData_vec;
std::vector<sol_data_t> neighborData_vec;
std::vector<sol_data_t> tabu_sol_data;
std::vector<sol_data_t> neighbor_sol_data;
pd2_tabuSearch::solution_t cur_sol;
pd2_tabuSearch::solution_t init_sol;
pd2_tabuSearch::solution_t best_sol;
sol_data_t cur_sol_data;
sol_data_t best_sol_data;
sol_data_t init_sol_data;
static void printSol(pd2_tabuSearch::solution_t *sol);
static void calcObj(pd2_tabuSearch::solution_t *sol);
static bool cmpTabu(pd2_tabuSearch::solution_t *solA,

pd2_tabuSearch::solution_t *solB);
static void genNeigh(pd2_tabuSearch::solution_t *sol,

pd2_tabuSearch::solution_t *newSol);
static void assignSol(pd2_tabuSearch::solution_t *from_sol,

pd2_tabuSearch::solution_t *to_sol);
unsigned int nni_limit; //number of non-improving iterations
static double tabu_xi_close; //scaled so 0 is no diff

//1 is the range of exp data
static double tabu_mw_close; //actual mw diff

public:
dp_tabu_01(); //constructor

122

void search(); //start tabu search
double initialObjective();
void setNonImproveLimit(unsigned int);
void setTabuListSize(unsigned int);
void setNeighborListSize(unsigned int);
void setInitialSolution(polymer *p);
polymer *getBestGroups();
molecule *getBestMolecule();

};

#endif

The next part will describe the source code for the Tabu search implantation a small

piece at a time. This example will illustrate the most commonly used and important

functions in PD. It provides a good example for setting up a Tabu search algorithm for

a new system.

The following code includes the header file and defines some variables, which are

used in functions contained in this file. The variables tabu xi close and tabu mw close

are used to set how close the connectivity indices and molecular weight of a monomer

may be to a solution on the Tabu list without classifying them as tabu.

#include"dp_tabu_01.hpp"
#include<cmath>

double dp_tabu_01::tabu_xi_close;
double dp_tabu_01::tabu_mw_close;

The following function is the constructor. It sets up an instance of the Tabu search

implementation. The variable ts is an instance of the generic Tabu search available in

PD. Comments in the code provide further description.

dp_tabu_01::dp_tabu_01(){
//set the list of tabu solutions
ts.setTabuList(&tabu_list);
//set the list of neighbor solutions
ts.setNeighborList(&neighbor_list);
//set the non-improving iteration limit to 0

123

//this will be reset later before running the
//algorithm
ts.setNNILimit(0);
//set the variable to store the best solution
ts.setBestSol(&best_sol);
//set the variable to store the initial solution
ts.setInitSol(&init_sol);
//set the variable to store the current solution
ts.setCurrSol(&cur_sol);
//set the function to compare a solution to one
//on the tabu list, this takes a function pointer
//argument, the function is defined below
ts.setTabuCmp(cmpTabu);
//set the function to calculate the objective
//function, this takes a function pointer
//argument, the function is defined below
ts.setCalcObj(calcObj);
//set the function to generate neighbors,
//the function is defined below
ts.setGenNeigh(genNeigh);
//set the function to copy a solution,
//the function is defined below
ts.setAssign(assignSol);
//set the function to print a solution,
//the function is defined below
ts.setPrintSol(printSol);
//set the place to store data for some solutions
//the sol member of the pd2_tabuSearch::solution_t
//data structure is a void pointer
cur_sol.sol = (void*)(&cur_sol_data);
best_sol.sol = (void*)(&best_sol_data);
init_sol.sol = (void*)(&init_sol_data);

}

The following function initiates the Tabu search algorithm by simply calling the

search member function of ts.

void dp_tabu_01::search(){
ts.search();

}

The following function calculates and returns the objective function value of the

initial solution. It will be used later.

double dp_tabu_01::initialObjective(){

124

return ts.initialObjective();
}

The following function is used to set the size of the the Tabu list and initialize it.

void dp_tabu_01::setTabuListSize(unsigned int s){
unsigned int i;
tabu_list.clear(); //clears the tabu list
tabu_vec.clear(); //clears the vector are solutions
tabuData_vec.clear(); //clear the vector were solution data is stored
tabuData_vec.resize(s);
tabu_vec.resize(s);
for(i=0; i<s; ++i){
// assign solution pointers to the list
tabu_list.push_back(&tabu_vec[i]);
tabu_vec[i].sol = (void*)(&tabuData_vec[i]);

}
}

The following function sets up the neighbor list. This list works the same way as

the tabu list above.

void dp_tabu_01::setNeighborListSize(unsigned int s){
unsigned int i;
neighbor_list.clear();
neighbor_vec.clear();
neighborData_vec.clear();
neighborData_vec.resize(s);
neighbor_vec.resize(s);
for(i=0; i<s; ++i){
neighbor_list.push_back(&neighbor_vec[i]);
neighbor_vec[i].sol = (void*)(&neighborData_vec[i]);

}
}

The function below is used to set the initial solution. A polymer graph representing

the arrangement of groups to form a monomer is given as the argument.

void dp_tabu_01::setInitialSolution(polymer *p){
//set the polymer of the initial solution
init_sol_data.mol_gen = *p;
//make a molecule out of the polymer

125

init_sol_data.mol_gen.constructMolecule();
//get the monomer structure from the polymer
init_sol_data.mol = *(init_sol_data.mol_gen.getConstructedMolecule());
//calculate molecular weight of the monomer an determine
//atom hybridization
init_sol_data.mol.calculateMolecularWeight();
//calculate connectivity indices up to third order
init_sol_data.mol.calculateBiceranoConnectivity(3);

}

The following two functions return the best solution structure. The first returns a

polymer graph using the groups and the second returns a molecular graph.

polymer *dp_tabu_01::getBestGroups(){
return &best_sol_data.mol_gen;

}

molecule *dp_tabu_01::getBestMolecule(){
return &best_sol_data.mol;

}

The following function is used to print information about a solution, and writes the

solution structure to an XML file that can be read by PD.

void dp_tabu_01::printSol(pd2_tabuSearch::solution_t *sol){
std::cout << "Degree of conversion: " <<
((sol_data_t*)(sol->sol))->DC << std::endl;

std::cout << "Crosslink density: " <<
((sol_data_t*)(sol->sol))->CD << std::endl;

std::cout << "Crosslink density (DC = 100%): " <<
((sol_data_t*)(sol->sol))->CD_100 << std::endl;

std::cout << "Tensile strength: " <<
((sol_data_t*)(sol->sol))->ts << std::endl;

std::cout << "Glass transition temperature: " <<
((sol_data_t*)(sol->sol))->Tg2 << std::endl;

std::cout << "Initial polymerization rate: " <<
((sol_data_t*)(sol->sol))->ipr << std::endl;

std::cout << "Molecular weight: " <<
((sol_data_t*)(sol->sol))->mw << std::endl;

//write the molecule to an xml file
((sol_data_t*)(sol->sol))->
mol_gen.writeConstructedMoleculeXMLFile("tabuSol.xml");

}

126

The following function is used to calculate the objective function of a solution and

estimate its properties.

void dp_tabu_01::calcObj(pd2_tabuSearch::solution_t *sol){
unsigned int i, j, h, m, s, mask;
double DC, ts, Tg2, ipr;
double WC = 0, CD, CD_100;
double xi_0, xiV_1, xiV_2, xiV_3;
double mw_hema, mw_bisgma, mw_mol;
double wt_hema, wt_bisgma, wt_mol;
double molfrac_hema, molfrac_bisgma, molfrac_mol;
int nvinyl_hema, nvinyl_bisgma, nvinyl_mol;
std::vector< std::vector< std::vector< unsigned int > > > stateVecs;
std::vector< int > nvinyl;
double p, pnot, f, molfrac_in;
std::vector< double > molfrac;
std::vector< std::vector< double > > molFracState;
unsigned int ns;

//the indices for the state vecs are i = monomer, j = state vector,
//h = f. group;
//I need state vectors to do the prob calcs for CD

//Get descriptors used in QSPRs
xi_0 = ((sol_data_t*)(sol->sol))->mol.getBiceranoXi(0);
xiV_1 = ((sol_data_t*)(sol->sol))->mol.getBiceranoXiV(1);
xiV_2 = ((sol_data_t*)(sol->sol))->mol.getBiceranoXiV(2);
xiV_3 = ((sol_data_t*)(sol->sol))->mol.getBiceranoXiV(3);
mw_mol = ((sol_data_t*)(sol->sol))->mol.getMolecularWeight();
DC = -66.064264794 + 1.565420561*WC + 479.870235339*xiV_1 - 120.447952881*xiV_3;

mw_hema = 130.143;
mw_bisgma = 512.599;
wt_hema = 45.0;
wt_bisgma = 30.0;
wt_mol = 25.0;
nvinyl_hema = 1;
nvinyl_bisgma = 2;
nvinyl_mol = 0;

//this loop counts the number of vinyl groups in a monomer
for(i=0; i < ((sol_data_t*)(sol->sol))->mol_gen.numVertices(); ++i){
m = ((sol_data_t*)(sol->sol))->mol_gen.getMonomer(i);
for(j=0; j < ((sol_data_t*)(sol->sol))->mol_gen.CMT1_termGroups.size(); ++j){
if(m == ((sol_data_t*)(sol->sol))->mol_gen.CMT1_termGroups[j]){
++nvinyl_mol;
break;

}
}//end j loop

}//end i loop

127

//calculate mole fraction of each monomer
molfrac_hema = (wt_hema/mw_hema)/

(wt_hema/mw_hema + wt_bisgma/mw_bisgma + wt_mol/mw_mol);
molfrac_bisgma = (wt_bisgma/mw_bisgma)/

(wt_hema/mw_hema + wt_bisgma/mw_bisgma + wt_mol/mw_mol);
molfrac_mol = (wt_mol/mw_mol)/

(wt_hema/mw_hema + wt_bisgma/mw_bisgma + wt_mol/mw_mol);

CD_100 = (nvinyl_hema-1)*molfrac_hema +
(nvinyl_bisgma-1)*molfrac_bisgma +
(nvinyl_mol-1)*molfrac_mol;

//make the state vectors
// i = 0 is hema, i = 1 is bisGMA, i = 2 is third monomer
stateVecs.resize(3); // there are three monomers
stateVecs[0].resize(2); //hema has two states
stateVecs[1].resize(4);

molFracState.resize(3);
molFracState[0].resize(2);
molFracState[1].resize(4);

ns = 1;
ns <<= nvinyl_mol; // binary shift to calculate number of states in monomer
stateVecs[2].resize(ns);
molFracState[2].resize(ns);
//put in state vecs
nvinyl.resize(3);
nvinyl[0] = nvinyl_hema;
nvinyl[1] = nvinyl_bisgma;
nvinyl[2] = nvinyl_mol;
for(i=0; i<stateVecs.size(); ++i){
// loop through monomers
s = 0; //binary representation of a state
//the first state vector is unreacted
for(j=0; j<stateVecs[i].size(); ++j){
stateVecs[i][j].resize(nvinyl[i] + 1);
// loop through states
stateVecs[i][j][0] = 0;
mask = 1;
for(h=1; h<(unsigned int)nvinyl[i]+1; ++h){
stateVecs[i][j][h] = (unsigned int)((mask & s) == mask);
mask <<= 1; //shift the 1 in mask over 1
//std::cout << stateVecs[i][j][h];

}
//std::cout << std::endl;
++s;

}// end j loop
}// end i loop

128

//probability a functional group reacts
p = DC/100.0;
//probability a functional group does not react
pnot = 1.0 - p;

// calculate mole fraction of each state
molfrac.resize(3);
molfrac[0] = molfrac_hema;
molfrac[1] = molfrac_bisgma;
molfrac[2] = molfrac_mol;
for(i=0; i<3; ++i){
for(j=0; j<stateVecs[i].size(); ++j){
f = 1;
for(h=1; h<stateVecs[i][j].size(); ++h){
if(stateVecs[i][j][h]) f *= p;
else f *= pnot;

}//end h loop
molFracState[i][j] = f*molfrac[i];

}//end j loop
}//end i loop

//Now I have the mole fraction of each state
//the unreacted states are not a part of the polymer network
//so I need new mole fractions of things that react
//remember the first state vector is unreacted
molfrac_in = 0;
for(i=0; i<3; ++i){
for(j=1; j<stateVecs[i].size(); ++j){
molfrac_in += molFracState[i][j];

}
}

// OK so I know the mole fraction that is in the network
//now to calculate crosslink density
CD = 0;
for(i=0; i<3; ++i){
for(j=1; j<stateVecs[i].size(); ++j){
//count reacted groups
ns = 0;
for(h=1; h<stateVecs[i][j].size(); ++h){
ns += stateVecs[i][j][h];

}
// now ns is the number of groups that react
ns -= 1;
// now ns is the number of cross links formed
CD += ns*molFracState[i][j]/molfrac_in;

}
}

//estimate the properties from QSPRs
ts = 15.42147728 - 308.90792806*CD +

129

194.83199066*CD_100 + 242.09566112*xiV_2;
Tg2 = 674.1494905637 + 0.6108983308*DC -

2190.4691820556*xiV_1 + 401.6520626521*xiV_2;
ipr = -528.94709587150 - 151.20634606711*CD_100 +

831.35424142271*xi_0 + 0.09496637828*mw_mol;

//calculate the objective function value
sol->obj = ((120.0 - Tg2)*(120.0 - Tg2))/(120.0*120.0) +

(ts-80.0)*(ts-80.0)/(80.0*80.0) +
(ipr-130.0)*(ipr-130.0)/(130.0*130.0) +
(DC-100.0)*(DC-100.0)/(100.0*100.0);

//store the properties in the solution data structure
((sol_data_t*)(sol->sol))->ts = ts;
((sol_data_t*)(sol->sol))->Tg2 = Tg2;
((sol_data_t*)(sol->sol))->ipr = ipr;
((sol_data_t*)(sol->sol))->DC = DC;
((sol_data_t*)(sol->sol))->CD = CD;
((sol_data_t*)(sol->sol))->CD_100 = CD_100;
((sol_data_t*)(sol->sol))->mw = mw_mol;

}

The following function is used to compare two solutions to determine how close

they are structurally. This is used to compare solutions to the Tabu list, and works

by comparing connectivity indices and molecular weight of the two monomers. If the

difference in any parameter exceeds a threshold, the structures are considered different.

bool dp_tabu_01::cmpTabu(pd2_tabuSearch::solution_t
*solA, pd2_tabuSearch::solution_t *solB){

double xi_0_range;
double xi_1_range;
double xi_2_range;
double xi_3_range;
double xiV_0_range;
double xiV_1_range;
double xiV_2_range;
double xiV_3_range;
double A_xi_0, A_xi_1, A_xi_2, A_xi_3,

A_xiV_0, A_xiV_1, A_xiV_2, A_xiV_3, A_mw;
double B_xi_0, B_xi_1, B_xi_2, B_xi_3,

B_xiV_0, B_xiV_1, B_xiV_2, B_xiV_3, B_mw;
bool tabu;

//these are the ranges of the connectivity
//indices in the experimental data
xi_0_range = 0.04534708;

130

xi_1_range = 0.02072973;
xi_2_range = 0.06434273;
xi_3_range = 0.07711074;
xiV_0_range = 0.06024335;
xiV_1_range = 0.02645703;
xiV_2_range = 0.05916363;
xiV_3_range = 0.05039862;

//these are the threshold values
tabu_mw_close = 25;
tabu_xi_close = 0.15;

A_xi_0 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXi(0);
A_xi_1 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXi(1);
A_xi_2 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXi(2);
A_xi_3 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXi(3);
A_xiV_0 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXiV(0);
A_xiV_1 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXiV(1);
A_xiV_2 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXiV(2);
A_xiV_3 = ((sol_data_t*)(solA->sol))->mol.getBiceranoXiV(3);
A_mw = ((sol_data_t*)(solA->sol))->mol.getMolecularWeight();
B_xi_0 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXi(0);
B_xi_1 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXi(1);
B_xi_2 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXi(2);
B_xi_3 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXi(3);
B_xiV_0 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXiV(0);
B_xiV_1 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXiV(1);
B_xiV_2 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXiV(2);
B_xiV_3 = ((sol_data_t*)(solB->sol))->mol.getBiceranoXiV(3);
B_mw = ((sol_data_t*)(solB->sol))->mol.getMolecularWeight();

tabu = 1;
if((A_xi_0 - B_xi_0)*(A_xi_0 - B_xi_0)/(xi_0_range*xi_0_range) >

tabu_xi_close) tabu = 0;
if((A_xi_1 - B_xi_1)*(A_xi_1 - B_xi_1)/(xi_1_range*xi_1_range) >

tabu_xi_close) tabu = 0;
if((A_xi_2 - B_xi_2)*(A_xi_2 - B_xi_2)/(xi_2_range*xi_2_range) >

tabu_xi_close) tabu = 0;
if((A_xi_3 - B_xi_3)*(A_xi_3 - B_xi_3)/(xi_3_range*xi_3_range) >

tabu_xi_close) tabu = 0;
if((A_xiV_0 - B_xiV_0)*(A_xiV_0 - B_xiV_0)/(xiV_0_range*xiV_0_range) >

tabu_xi_close) tabu = 0;
if((A_xiV_1 - B_xiV_1)*(A_xiV_1 - B_xiV_1)/(xiV_1_range*xiV_1_range) >

tabu_xi_close) tabu = 0;
if((A_xiV_2 - B_xiV_2)*(A_xiV_2 - B_xiV_2)/(xiV_2_range*xiV_2_range) >

tabu_xi_close) tabu = 0;
if((A_xiV_3 - B_xiV_3)*(A_xiV_3 - B_xiV_3)/(xiV_3_range*xiV_3_range) >

tabu_xi_close) tabu = 0;
if(fabs(A_mw - B_mw) > tabu_mw_close) tabu = 0;
return tabu;

}

131

The following function generates a neighbor of a solution.

void dp_tabu_01::genNeigh(pd2_tabuSearch::solution_t *sol,
pd2_tabuSearch::solution_t *newSol){

// Generates neighbor by removing, inserting or replacing groups

unsigned int i; // loop counter
unsigned int op; //operation 0 = insert, 1 = delete
unsigned int nOp; //number of operations
unsigned int nOpMin, nOpMax; // range of nOp
unsigned int maxVert;
unsigned int nr, nrMax, nrMin; //number of replacements
nOpMin = 1;
nOpMax = 2;
maxVert = 30;

// select whether to insert or delete groups
if(((sol_data_t*)(newSol->sol))->mol_gen.numVertices() >= maxVert) op = 1;
else if(((sol_data_t*)(newSol->sol))->mol_gen.numVertices() <= 3) op = 0;
else op = pd2_tabuSearch::randomIntUniform(0,1);

//select a number of delete or insert operations
nOp = pd2_tabuSearch::randomIntUniform(0,nOpMax);

//do insert or delete operations
((sol_data_t*)(newSol->sol))->mol_gen =
((sol_data_t*)(sol->sol))->mol_gen;

for(i=0; i<nOp; ++i){
if(op==0)
((sol_data_t*)(newSol->sol))->mol_gen.constructMoleculeType1_InsertGroup();
else
((sol_data_t*)(newSol->sol))->mol_gen.constructMoleculeType1_DeleteGroup();

}

//select a number of replacements to do
nrMax = nOpMax - nOp;
if(nOp < nOpMin) nrMin = nOpMin - nOp;
else nrMin = 0;
if(nrMax == 0) nr = 0;
else if(nrMax == nrMin) nr = nOpMax;
else nr = pd2_tabuSearch::randomIntUniform(nrMin,nrMax);

//do replacement operations
for(i = 0; i<nr; ++i){

((sol_data_t*)(newSol->sol))->
mol_gen.constructMoleculeType1_ReplaceGroup();

}
((sol_data_t*)(newSol->sol))->mol_gen.constructMolecule();
((sol_data_t*)(newSol->sol))->mol = *(((sol_data_t*)(newSol->sol))->

mol_gen.getConstructedMolecule());
((sol_data_t*)(newSol->sol))->mol.calculateMolecularWeight();

132

((sol_data_t*)(newSol->sol))->mol.calculateBiceranoConnectivity(3);
}

The following function is used to copy one solution to another.

void dp_tabu_01::assignSol(pd2_tabuSearch::solution_t *from_sol,
pd2_tabuSearch::solution_t *to_sol){

((sol_data_t*)(to_sol->sol))->mw = ((sol_data_t*)(from_sol->sol))->mw;
((sol_data_t*)(to_sol->sol))->CD = ((sol_data_t*)(from_sol->sol))->CD;
((sol_data_t*)(to_sol->sol))->CD_100 =
((sol_data_t*)(from_sol->sol))->CD_100;

((sol_data_t*)(to_sol->sol))->DC = ((sol_data_t*)(from_sol->sol))->DC;
((sol_data_t*)(to_sol->sol))->ts = ((sol_data_t*)(from_sol->sol))->ts;
((sol_data_t*)(to_sol->sol))->Tg2 = ((sol_data_t*)(from_sol->sol))->Tg2;
((sol_data_t*)(to_sol->sol))->ipr = ((sol_data_t*)(from_sol->sol))->ipr;
((sol_data_t*)(to_sol->sol))->mol = ((sol_data_t*)(from_sol->sol))->mol;
((sol_data_t*)(to_sol->sol))->mol_gen =
((sol_data_t*)(from_sol->sol))->mol_gen;

to_sol->obj = from_sol->obj;
}

C.2 Using the Tabu Search Implementation

The following provides some code excerpts that show how the Tabu search imple-

mentation can be used. The groups are contained in the polymer graph. The initial

polymer graph is created using the graphical editor. The groups are also drawn in the

graphical editor.

dp_tabu_01 dpts;
//set the probabilities for selecting certain types of
//group when randomly constructing an initial molecule
//this is 30% terminal groups, 30% chain groups
//forty percent branching groups, and at most 2
//branching groups
g_poly->constructMoleculeType1_SetupGroups(30,30,40,2);
//sets the number of non-improving iterations
dpts.setNonImproveLimit(200);
//sets the size of the tabu list
dpts.setTabuListSize(6);
//sets the number of neighbors to generate
dpts.setNeighborListSize(5);

133

//sets the initial solution graph
dpts.setInitialSolution(g_poly);
//starts the search
dpts.search();

When the Tabu search algorithm completes, the result is printed to the terminal

and the monomer structure is written to an XML file.

134

