69 research outputs found

    NR1H4-related Progressive Familial Intrahepatic Cholestasis 5: Further Evidence for Rapidly Progressive Liver Failure.

    Get PDF
    Pathogenic sequence variants in the nuclear bile acid receptor FXR, encoded by NR1H4, have been reported in a small number of children with low-GGT cholestasis progressing to liver failure. We describe three additional children from two unrelated families with cholestasis and liver failure due to pathologic variants in NR1H4. One patient underwent liver transplantation and has had good clinical outcomes in six years of follow-up. While that patient has biochemical evidence of increased bile acid synthetic activity, he has not experienced post-transplant diarrhea or allograft steatosis, as has been reported among other transplanted patients

    Multifunctional Theranostic Graphene Oxide Nanoflakes as MR Imaging Agents with Enhanced Photothermal and Radiosensitizing Properties

    Get PDF
    The integration of multiple therapeutic and diagnostic functions into a single nanoplatform for image-guided cancer therapy has been an emerging trend in nanomedicine. We show here that multifunctional theranostic nanostructures consisting of superparamagnetic iron oxide (SPIO) and gold nanoparticles (AuNPs) scaffolded within graphene oxide nanoflakes (GO-SPIO-Au NFs) can be used for dual photo/radiotherapy by virtue of the near-infrared (NIR) absorbance of GO for photothermal therapy (PTT) and the Z element radiosensitization of AuNPs for enhanced radiation therapy (RT). At the same time, this nanoplatform can also be detected by magnetic resonance (MR) imaging because of the presence of SPIO NPs. Using a mouse carcinoma model, GO-SPIO-Au NF-mediated combined PTT/RT exhibited a 1.85-fold and 1.44-fold higher therapeutic efficacy compared to either NF-mediated PTT or RT alone, respectively, resulting in a complete eradication of tumors. As a sensitive multifunctional theranostic platform, GO-SPIO-Au NFs appear to be a promising nanomaterial for enhanced cancer imaging and therapy. © 2021 American Chemical Society

    In vitro cytotoxicity of folate-silica-gold nanorods on mouse acute lymphoblastic leukemia and spermatogonial cells

    Get PDF
    Objective: The purpose of this study was to evaluate in vitro cytotoxicity of gold nanorods (GNRs) on the viability of spermatogonial cells (SSCs) and mouse acute lymphoblastic leukemia cells (EL4s). Materials and Methods: In this experimental study, SSCs were isolated from the neonate mice, following enzymatic digestion and differential plating. GNRs were synthesized, then modified by silica and finally conjugated with folic acid to form F-Si-GNRs. Different doses of F-Si-GNRs (25, 50, 75, 100, 125 and 140 μM) were used on SSCs and EL4s. MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) proliferation assay was performed to examine the GNRs toxicity. Flow cytometry was used to confirm the identity of the EL4s and SSCs. Also, the identity and functionality of SSCs were determined by the expression of specific spermatogonial genes and transplantation into recipient testes. Apoptosis was determined by flow cytometry using an annexin V/propidium iodide (PI) kit. Results: Flow cytometry showed that SSCs and EL4s were positive for Plzf and H-2kb, respectively. The viability percentage of SSCs and EL4s that were treated with 25, 50, 75, 100, 125 and 140 μM of F-Si-GNRs was 65.33 ± 3.51, 60 ± 3.6, 51.33 ± 3.51, 49 ± 3, 30.66 ± 2.08 and 16.33 ± 2.51 for SSCs and 57.66 ± 0.57, 54.66 ± 1.5, 39.66 ± 1.52, 12.33 ± 2.51, 10 ± 1 and 5.66 ± 1.15 for EL4s respectively. The results of the MTT assay indicated that 100 μM is the optimal dose to reach the highest and lowest level of cell death in EL4s and in SSCs, respectively. Conclusion: Cell death increased with increasing concentrations of F-Si-GNRs. Following utilization of F-Si-GNRs, there was a significant difference in the extent of apoptosis between cancer cells and SSCs. © 2019 Royan Institute (ACECR). All rights reserved

    Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants

    Get PDF
    Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∼90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1−/− mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy

    PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment.

    Get PDF
    PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation

    Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.

    Get PDF
    Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies

    Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease

    Get PDF
    International audienceWe investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi–Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64–25.71) compared with controls (median: 0.93, IQR: 0.57–1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context

    Broadening the phenotypic and molecular spectrum of FINCA syndrome: Biallelic NHLRC2 variants in 15 novel individuals

    Get PDF
    FINCA syndrome [MIM: 618278] is an autosomal recessive multisystem disorder characterized by fibrosis, neurodegeneration and cerebral angiomatosis. To date, 13 patients from nine families with biallelic NHLRC2 variants have been published. In all of them, the recurrent missense variant p.(Asp148Tyr) was detected on at least one allele. Common manifestations included lung or muscle fibrosis, respiratory distress, developmental delay, neuromuscular symptoms and seizures often followed by early death due to rapid disease progression.Here, we present 15 individuals from 12 families with an overlapping phenotype associated with nine novel NHLRC2 variants identified by exome analysis. All patients described here presented with moderate to severe global developmental delay and variable disease progression. Seizures, truncal hypotonia and movement disorders were frequently observed. Notably, we also present the first eight cases in which the recurrent p.(Asp148Tyr) variant was not detected in either homozygous or compound heterozygous state.We cloned and expressed all novel and most previously published non-truncating variants in HEK293-cells. From the results of these functional studies, we propose a potential genotype-phenotype correlation, with a greater reduction in protein expression being associated with a more severe phenotype.Taken together, our findings broaden the known phenotypic and molecular spectrum and emphasize that NHLRC2-related disease should be considered in patients presenting with intellectual disability, movement disorders, neuroregression and epilepsy with or without pulmonary involvement
    corecore