Supporting Information

Multifunctional theranostic graphene oxide nanoflakes as MR imaging agents with enhanced photothermal and radiosensitizing properties

Jaber Beik¹, Zahra Alamzadeh¹, Mehri Mirrahimi¹, Abolfazl Sarikhani¹, Tahereh Shakerian Ardakani², Mohamadreza Asadi¹, Rasoul Irajirad¹, Mehraban Mirrahimi³, Vahid Pirhajati Mahabadi^{4,5}, Neda Eslahi⁶, Jeff W.M. Bulte^{7,8}, Habib Ghaznavi^{9,*},

Ali Shakeri-Zadeh^{1,*,#}

¹Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran

²Department of Physics, Payame Noor University, Tehran, Iran

³Biology Department, School of Science, Tehran University of Medical Sciences, Tehran, Iran

⁴Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran

⁵Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran

⁶Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran

⁷The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

⁸Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

⁹ Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran

Corresponding authors:

(*) Dr. H. Ghaznavi: ghaznavih@yahoo.com

(*) Dr. A. Shakeri-Zadeh: ashaker3@jhu.edu

(#)Current address: Russell H. Morgan Department of Radiology, Division of MR Research,

733 N Broadway, MRB 653, Baltimore, MD 21205, USA.

Calculation of photothermal conversion efficiency

The photothermal conversion efficiency (η) of NFs was calculated according to the following formulas (1, 2):

$$\eta = \frac{hS (T_{max} - T_{sur}) - Q_{dis}}{I(1 - 10^{-A_{808}})}$$
(1)

where *h* is the heat transfer coefficient, *S* is the surface area of the container, T_{max} and T_{sur} are the maximum equilibrium temperature and the ambient temperature, I is the laser power, A_{808} is the absorbance of NFs at 808 nm, and Q_{dis} is heat dissipation due to light absorbance of the solvent. *hS* can be calculated according to the following equation:

$$hS = \frac{m_s C_s}{\tau}$$
(2)

where τ is the sample system time constant, and m_s and C_s are the mass and the heat capacity of the solvent (water), respectively.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.5 0.2 0.1 0.05 0 TE= 36 ms	1 0.5 0.2 0.1 0.05 0 TE= 48 ms	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
IE= 12 ms	TE- 24 IIIs	TE- 38 IIIs	1E- 48 IIIS	IE- 80 IIIs
	1 0.5 0.2	1 0.5 0.2	1 0.5 0.2	1 0.5 0.2
0.1 0.05 0	0.1 0.05 0	0.1 0.05 0	0.1 0.05 0	0.1 0.05 0
TE= 72 ms	TE= 84 ms	TE= 96 ms	TE= 108 ms	TE= 120 ms
1 0.5 0.2 0.1 0.05 0	1 0.5 0.2 0 0 0 0.1 0.05 0	1 0.5 0.2 0.1 0.05 0	1 0.5 0.2 0.1 0.05 0	
TE= 132 ms	TE= 144 ms	TE= 156 ms	TE= 168 ms	

[Fe] concentration/ mM

Figure S1. T2-weighted MR images of NF solutions containing 0-1.0 mM Fe. Images were obtained for various TE values, with the TR value fixed at 2,000 ms.

Figure S2. Temperature changes of the NF solution (50 μ g/mL) during NIR heating (laser on, 1.8 W/cm²) and cooling (laser off) cycles.

Figure S3. Temperature increase of CT26 cells incubated with various concentrations of NFs for 4 h. Temperatures were recorded after 808 nm laser irradiation for 1 or 2 min at 1.5 W/cm^2 .

Figure S4. Representative H&E images from the combined NF + PTT/RT group at day 2 post-treatment, showing marked vascular hemorrhaging (R: red blood cells; N: necrotic zone).

References

S1. Bhana S, Lin G, Wang L, Starring H, Mishra SR, Liu G, et al. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS applied materials & interfaces. 2015;7(21):11637-47.

S2. Hu Y, Wang R, Wang S, Ding L, Li J, Luo Y, et al. Multifunctional Fe₃O₄@ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Scientific Reports. 2016;6.