81 research outputs found

    Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3

    Get PDF
    Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.Funding: This study has been supported: (i) by MICINN (SAF2009-11847 and SAF2015-68580-C2-1-R), CIBERNED (CB06/05/0089) and “Fundación Eugenio Rodríguez Pascual”, to JFR; (ii) by the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin, to CJH; and (iii) by Fundação para a Ciência e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014) and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), to PM. Carmen Rodríguez-Cueto was a predoctoral fellow supported by FPI Program-Ministry of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia

    No full text
    Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia

    Depression and quality of life in monogenic compared to idiopathic, early-onset Parkinson's disease.

    No full text
    Item does not contain fulltextQuality of life (QoL) is decreased in PD and is linked with depression and anxiety. However, little is known about QoL in monogenic PD. Subjects with mutations in PD genes were recruited from ongoing family and genetic studies (manifesting carriers, n = 23; nonmanifesting carriers, n = 19). For comparison purposes, we included patients with idiopathic PD (IPD; n = 128; early onset, n = 38; late onset, n = 90), healthy controls (n = 127), and data on depressive symptoms of 144 patients with major depression (treated controls). Depression affected 31% of early-onset PD cases, 21% of late-onset cases, and 44% of manifesting carriers of mutations in PD genes, but was rare in the nonmanifesting carriers (7%) and healthy controls (5%). Subjects with Parkinson-associated depression reported fewer feelings of guilt or self-doubt than treated controls, but the occurrence of suicidal ideation was associated with severity of depression only. Social phobia (P = 0.018) and agoraphobia (P = 0.059) were more common in manifesting carriers than in any other group. QoL was decreased in the Parkinson groups, particularly in the early-onset cases (P < 0.001), and QoL correlated with depression in all analyses. In our study, monogenic and IPD cases were comparable in QoL and depression characteristics. The QoL and, possibly, overall prognosis of all PD patients can be improved by appropriate attention and treatment for depression, sleep impairments, and anxiety, even if the treatment of the motor problems cannot be further optimized.1 mei 201

    Evaluation of AZD1446 as a Therapeutic in DYT1 Dystonia

    No full text
    DYT1 dystonia is an early-onset, hyperkinetic movement disorder caused by a deletion in the gene TOR1A, which encodes the protein torsinA. Several lines of evidence show that in animal models of DTY1 dystonia, there is impaired basal dopamine (DA) release and enhanced acetylcholine tone. Clinically, anticholinergic drugs are the most effective pharmacological treatment for DYT1 dystonia, but the currently used agents are non-selective muscarinic antagonists and associated with side effects. We used a DYT1 ∆GAG knock-in mouse model (DYT1 KI) to investigate whether nicotine and/or a non-desensitizing nicotinic agonist, AZD1446, would increase DA output in DYT1 dystonia. Using in vivo microdialysis, we found that DYT1 KI mice showed significantly increased DA output and greater sensitivity to nicotine compared to wild type (WT) littermate controls. In contrast, neither systemic injection (0.25–0.75 mg/kg) or intrastriatal infusion (30 μM–1 mM) of AZD1446 had a significant effect on DA efflux in WT or DYT1 KI mice. In vitro, we found that AZD1446 had no effect on the membrane properties of striatal spiny projection neurons (SPNs) and did not alter the spontaneous firing of ChI interneurons in either WT or DYT1 KI mice. We did observe that the firing frequency of dopaminergic neurons was significantly increased by AZD1446 (10 μM), an effect blocked by dihydro-beta-erythroidine (DHβE 3 μM), but the effect was similar in WT and DYT1 KI mice. Our results support the view that DYT1 models are associated with abnormal striatal cholinergic transmission, and that the DYT1 KI animals have enhanced sensitivity to nicotine. We found little effect of AZD1446 in this model, suggesting that other approaches to nicotinic modulation should be explored

    Behavioral and Cellular Modulation of l-DOPA-Induced Dyskinesia by β-Adrenoceptor Blockade in the 6-Hydroxydopamine-Lesioned Rat

    No full text
    Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as l-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with l-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF l-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (−)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic l-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (−)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action

    Schizophrenia-like dopamine release abnormalities in a mouse model of NMDA receptor hypofunction

    No full text
    Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenialike phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatinCre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuronNMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology.Fil: Nakao, Kazuhito. University Of Alabama At Birmingham; Estados UnidosFil: Jeevakumar, Vivek. University Of Alabama At Birmingham; Estados UnidosFil: Jiang, Sunny Zhihong. University Of Alabama At Birmingham; Estados UnidosFil: Fujita, Yuko. No especifíca;Fil: Diaz, Noelia Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Pretell Annan, Carlos Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Eskow Jaunarajs, Karen L.. University Of Alabama At Birmingham; Estados UnidosFil: Hashimoto, Kenji. Chiba University; JapónFil: Belforte, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Nakazawa, Kazu. University Of Alabama At Birmingham; Estados Unido
    corecore