5 research outputs found

    Orthogonality constrained inverse regression to improve model selectivity and analyte predictions from vibrational spectroscopic measurements

    Get PDF
    In analytical chemistry spectroscopy is attractive for high-throughput quantification, which often relies on inverse regression, like partial least squares regression. Due to a multivariate nature of spectroscopic measurements an analyte can be quantified in presence of interferences. However, if the model is not fully selective against interferences, analyte predictions may be biased. The degree of model selectivity against an interferent is defined by the inner relation between the regression vector and the pure interfering signal. If the regression vector is orthogonal to the signal, this inner relation equals zero and the model is fully selective. The degree of model selectivity largely depends on calibration data quality. Strong correlations may deteriorate calibration data resulting in poorly selective models. We show this using a fructose-maltose model system. Furthermore, we modify the NIPALS algorithm to improve model selectivity when calibration data are deteriorated. This modification is done by incorporating a projection matrix into the algorithm, which constrains regression vector estimation to the null-space of known interfering signals. This way known interfering signals are handled, while unknown signals are accounted for by latent variables. We test the modified algorithm and compare it to the conventional NIPALS algorithm using both simulated and industrial process data. The industrial process data consist of mid-infrared measurements obtained on mixtures of beta-lactoglobulin (analyte of interest), and alpha-lactalbumin and caseinoglycomacropeptide (interfering species). The root mean squared error of beta-lactoglobulin (% w/w) predictions of a test set was 0.92 and 0.33 when applying the conventional and the modified NIPALS algorithm, respectively. Our modification of the algorithm returns simpler models with improved selectivity and analyte predictions. This paper shows how known interfering signals may be utilized in a direct fashion, while benefitting from a latent variable approach. The modified algorithm can be viewed as a fusion between ordinary least squares regression and partial least squares regression and may be very useful when knowledge of some (but not all) interfering species is available

    Milk coagulation properties and methods of detection

    Get PDF
    ABSTRACT: One of the most crucial steps in cheesemaking is the coagulation process, and knowledge of the parameters involved in the clotting process plays an important technological role in the dairy industry. Milk of different ruminant species vary in terms of their coagulation capacities because they are influenced by the milk composition and mainly by the milk protein genetic variants. The milk coagulation capacity can be measured by means of mechanical and/or optical devices, such as Lactodynamographic Analysis and Near-Infrared and Mid-Infrared Spectroscopy

    Microalbuminuria as a predictor of clinical diabetic nephropathy

    No full text

    Epigenetic Mechanisms of Blood-Pressure Regulation

    No full text
    corecore