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In analytical chemistry spectroscopy is attractive for high-throughput quantification, which often relies
on inverse regression, like partial least squares regression. Due to a multivariate nature of spectroscopic
measurements an analyte can be quantified in presence of interferences. However, if the model is not
fully selective against interferences, analyte predictions may be biased. The degree of model selectivity
against an interferent is defined by the inner relation between the regression vector and the pure
interfering signal. If the regression vector is orthogonal to the signal, this inner relation equals zero and
the model is fully selective. The degree of model selectivity largely depends on calibration data quality.
Strong correlations may deteriorate calibration data resulting in poorly selective models. We show this
using a fructose-maltose model system. Furthermore, we modify the NIPALS algorithm to improve model
selectivity when calibration data are deteriorated. This modification is done by incorporating a projection
matrix into the algorithm, which constrains regression vector estimation to the null-space of known
interfering signals. This way known interfering signals are handled, while unknown signals are
accounted for by latent variables. We test the modified algorithm and compare it to the conventional
NIPALS algorithm using both simulated and industrial process data. The industrial process data consist of
mid-infrared measurements obtained on mixtures of beta-lactoglobulin (analyte of interest), and alpha-
lactalbumin and caseinoglycomacropeptide (interfering species). The root mean squared error of beta-
lactoglobulin (% w/w) predictions of a test set was 0.92 and 0.33 when applying the conventional and
the modified NIPALS algorithm, respectively. Our modification of the algorithm returns simpler models
n).
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with improved selectivity and analyte predictions. This paper shows how known interfering signals may
be utilized in a direct fashion, while benefitting from a latent variable approach. The modified algorithm
can be viewed as a fusion between ordinary least squares regression and partial least squares regression
and may be very useful when knowledge of some (but not all) interfering species is available.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vibrational spectroscopic techniques, including mid-infrared
spectroscopy (MIRS), are attractive to both academia and in-
dustry, compared to traditional wet chemical analysis. Vibrational
spectroscopy offers low cost and high-throughput analysis, and
problematic chemicals are most often not needed [1]. Most spec-
troscopic applications rely on advanced inverse calibration
methods such as partial least squares (PLS) regression [2]. In pursuit
of obtaining predictions of multiple analytes simultaneously in
complex systems, using rapid spectroscopic methods coupled with
advanced inverse regression methods, the importance of calibra-
tion model selectivity becomes apparent [3e5]. If a PLS model,
predicting an analyte, is not fully selective against interferences, the
analyte prediction will depend on the quantities of these in-
terferences. This will compromise model validity and robustness
[6,7]. In this paper, we show how the configuration of calibration
data affects PLS model selectivity, and we propose a modification of
the non-linear iterative partial least squares (NIPALS) algorithm for
PLS regression, which ensures model selectivity against known
interfering signals. This may result in less complex PLS models with
lower prediction error uncertainties and better selectivity.

A net analyte signal (NAS) is a part of an analyte signal (at unit
concentration) that is orthogonal to signals of all coexisting in-
terferences (i.e., a NAS is the part of an analyte signal that is in the
null-space of all interferences) [8,9]. Therefore, the size of a sample
measurement projected onto the NAS is directly related to the
sample's analyte quantity. There are two aspects to a NAS, namely
direction and size, which are affected by the pure signals of the
analyte and all interfering species. If the estimated regression
vector has the direction of the NAS, the regression model is fully
selective against interfering species in the calibration data [10e12].
Regression model selectivity is further elaborated in section 2.1.

When calibrating a PLS model, great care must be taken during
calibration data acquisition. To obtain good analyte predictions of a
future sample, calibration data configuration should ideally
resemble that of the future sample [4]. However, if the data
configuration of future samples is inconsistent (i.e., the analyte
concentration varies independent of interferences), calibration
model selectivity becomes very important [4]. To calibrate a PLS
model with good selectivity, a calibration data set should consist of
samples with different and linearly independent combinations of
quantities of analyte and interfering species. This ensures that
sample measurements span a relevant space of the analyte as well
as interfering species [13]. In turn, this allows estimating a PLS
model with good selectivity. Nevertheless, the calibration data set
may be deteriorated if the space spanned by sample measurements
collapses, and this may compromise selectivity of the estimated PLS
model. Several factors may deteriorate calibration data, like strong
correlations between quantities of the analyte and interfering
species, compounds present in quantities with relative low varia-
tion, and compounds with highly similar signals. The effect of these
factors is sketched in Fig. 1. The degree to which these factors
deteriorate the calibration data also depend on signal-to-noise ratio
and the number of samples used for calibration.
2

Fig. 1 shows the row-space of four simulated data sets, each
consisting of an analyte signal at unit concentration, sy, an inter-
fering species signal at unit concentration, sk, the NAS and five
sample measurements, xi. The sample measurements are con-
structed as a bilinear combination of two factor matrices, one
containing compound quantities and the other containing signals,
mimicking a Beer's law system. In Fig. 1A, the coefficient of deter-
mination, r2, between quantities of the analyte and interferent is
0.1 and in Fig. 1B this r2 is 0.9. Comparing Fig. 1A to B shows that
increasing r2 between quantities of the analyte and interferent will
deteriorate the space spanned by xi (i.e., the xi-space in Fig. 1B
collapses and is well approximated by a one-dimensional latent
space). In Fig. 1C the r2 between quantities of the analyte and
interferent is 0.1, but quantities of the interferent is only 10% as
compared to data presented in Fig.1A (i.e., the interferent has lower
variation in Fig. 1C). Comparing Fig. 1AeC shows that a compound
present in quantities with relatively low variation will also deteri-
orate the xi-space. Last, in Fig. 1D the quantities of both the analyte
and interferent are identical to Fig. 1A. However, in Fig. 1D sk has
higher similarity with sy, in contrast to Fig. 1A. Comparing
Fig. 1AeD demonstrates that increased similarity between signals
will deteriorate the xi-space.

The signals are identical in Fig. 1AeC. Therefore, the NAS and the
regression vector are identical for the systems presented in
Fig. 1AeC, even though xi differ between Fig. 1 A-C. Sample mea-
surements in Fig. 1B and C contain less variation in the NAS-
direction, as compared to samples measurements in Fig. 1A.
Therefore, the regression vector may be estimated with larger un-
certainties when calibrating a regression model using sample
measurements presented in either Fig. 1B or 1C, as compared to
samples measurements in Fig. 1A. In turn, this may compromise
regression model selectivity. Using a fructose-maltose model sys-
tem, we will show how PLS model selectivity is affected by
increasing r2 between quantities of the analyte and interferent
(Fig. 1B) and by lowering the variance of the interferent (Fig. 1C). In
Fig. 1D, the interferent signal is changed, while the analyte signal is
kept constant, as compared to Fig. 1A-C. Consequently, the NAS and
thereby the regression vector change direction and size. However,
in this paper we will not deal with changing interfering signals.

Even though it is desirable to have calibration data, which span
the space of the analyte and interfering signals, this cannot
necessarily be accomplished. Consider, for example, industrial
productions, where unwanted (interfering) variation is often
minimized, and some industrial processes may induce covariance
structures between the analyte and interferents [14]. Calibration
data may also be deteriorated when e.g., monitoring chemical
cascade reactions with spectroscopic measurements. In such re-
actions, quantities of reactants, intermediates, and products will
depend on each other and spectroscopic signals of those products
may be highly similar, as previously observed for photo degradation
of crystal violet [15]. Moreover, strong covariance structures are
also found in naturally occurring biological systems [11,16,17].

Traditionally, the problem of strong correlations between
quantities of analyte and interfering species, and compounds pre-
sent in low variation, is augmented with spiked samples to obtain a

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Deterioration of sample measurement space (simulated data). A) Reference data set, B) increased covariance between quantities of the analyte and interferent, C) decreased
variation of interfering quantities, and D) increased similarity of signals. Analyte and interfering signals at unit concentration are denoted by sy and sk , respectively. The net analyte
signal is denoted by NAS and xi are combinations of sy and sk , which mimic sample measurements.
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better sample representation of the space spanned by the pure
signals. Nevertheless, spiked samples are manipulated andmay not
reflect true samples in terms of background and concentration
ranges, which, in turn, may compromise calibration model validity.
Furthermore, the spiking procedure may be laborious. Therefore,
alternatives to the spiking procedure are of our interest.

Substantial knowledge about interferents is commonly available
in industrial processes and academia. This knowledge could, for
example, be compound identity, pure signal, and typical concen-
tration range. Several studies show how to utilize this information
through projection-based strategies to correct the calibration data
for effects of interferences prior to PLS modeling. Wold et al. [18],
Andersson [19] and Trygg and Wold [20] all split the column-space
variation into a part related to analyte quantities and a part
orthogonal to analyte quantities. These methods are effective in
removing variation independent from the analyte and may provide
simpler models with better interpretability. However, if quantities
of the analyte and interferents covaries, such corrections of the
column-space may not be satisfying. Hansen [21] suggested a
correction of the row-space. This correction requires acquisition of
an additional data set without analyte variation. This additional
data set is used to model the interference space by principal
component analysis, and the calibration datawith analyte variation
is then projected onto the null-space of interferences prior to PLS
modeling. An identical approach, though implemented differently,
was presented by Ferr�e and Brown [22], and Roger et al. [23] sug-
gested a similar approach with an alternative way of modeling the
interference space. Whereas Hansen [21] predicted acetone in milk
from MIRS measurements, both Ferr�e and Brown [22], and Roger
et al. [23] used the approach to minimize the effect of temperature
on spectroscopic measurements by recording a calibration data set
under varying temperature conditions. These approaches work
well for correcting for interferences, when it is possible to obtain
the additional data that are needed.

In this paper we work along the lines of Hansen [21], Ferr�e and
Brown [22], and Roger et al. [23] in the sense that we also control
the row-space, used for analyte prediction, by defining a null-space
of interference. Rather than collecting an additional data set of
interference, we take advantage of known interfering signals, as
also suggested by Ferr�e and Brown [22], and we show how the
estimated regression vector can be constrained in the null-space of
these known interferents, while latent variable (LV) estimation
accounts for unknown interferences. Instead of implementing this
as a preprocessing step, as suggest by Hansen [21], Ferr�e and Brown
3

[22], and Roger et al. [23], we incorporate a projection matrix into
the NIPALS algorithm, projecting all row-space calculations onto
the null-space of the known interfering signal(s). This way, we
improve model selectivity towards known interferents. This ulti-
mately ensures robust models with improved analyte predictions.

We outline the orthogonality constrained inverse regression
method and compare it to the conventional NIPALS PLS algorithm.
We do this by using both simulated data, as well as industrial
process data obtained from a whey protein fractionation process.

2. Theory

Consider a Beer's law system with two constituents. The inde-
pendent variables are given by XðI�JÞ in (1),

X¼ cysTy þ cks
T
k þ E (1)

True concentrations of an analyte and an interferent are given by
cyðI�1Þ and ckðI � 1Þ, respectively, analyte and interferent signals
(at unit concentration) are given by syðJ�1Þ and skðJ � 1Þ, respec-
tively, and EðI�JÞ is noise. The reference measurements of the
analyte (i.e., the response values) are given by yðI�1Þ in (2),

y¼ cy þ e (2)

where eðI�1Þ is noise. The predictions of y, byðI � 1Þ, are obtained in

(3) by multiplying X and a regression vector, bbðJ � 1Þ, estimated
using calibration data.

by¼Xbb (3)

2.1. Regression model selectivity

A regression model is fully selective against an interferent if
analyte predictions are not affected (i.e., biased) by quantities of the
interferent [4,5,7]. Substituting (1) into (3) returns,

by¼ cysTy
bb þ cks

T
k
bb þ Ebb (4)

which shows that analyte predictions are made up of a vector sum

with contributions from the analyte (cysTy
bb), the interferent (cksTk bb),

and X-noise (Ebb). Hence, the regression model is fully selective
against the interferent if the inner relation between the interferent
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signal and the regression vector (sTk
bb) equals zero. This inner rela-

tion is zero when bb is in the null-space of sk (i.e., when bb is
orthogonal to sk). Furthermore, (4) shows that the inner relation
between analyte signal (at unit concentration) and the regression

vector (sTy
bb) is close to one for a good regression model [7,10]. If the

regression model is not fully selective against the interferent (i.e.,

sTk
bbs0), then the terms sTy

bb and sTk
bb are balanced (i.e., sTy

bbs 1)
during calibration, to return predictions of the calibration data,
which are on average unbiased. Here, E is assumed relatively small

and random. Hence, Ebbz0, where 0ðI � 1Þ is a vector of zeros, and

the term Ebb in (4) is neglected.
In this study, regression model selectivity is determined by

calculating the inner relation between the pure signals at unit
concentrations (both analyte and interfering species) and the
estimated regression vector. Furthermore, the root mean squared
error (RMSE) of test set predictions is used to evaluate model pre-
dictive performance.
2.2. Orthogonality constrained regression algorithm

As mentioned, to obtain good and valid predictions of y, the
regression vector should have the direction of the NAS in the
J-dimensional X-space. However, if sk is poorly represented in X,
the NIPALS algorithm (presented in Appendix A) may not be able to
successfully estimate the regression vector in the null-space of sk. A
way to constrain the regression vector estimation into this null-
space, which will be pursued here, is by incorporating a projection
matrix into the NIPALS algorithm. This projection matrix projects
all row-space calculations of the NIPALS algorithm onto the null-
space of sk. This ultimately ensures that the regression vector also

will be in this null-space. Hence, sTk
bb ¼ 0 and the regression model

is fully selective against the interferent. The modified NIPALS al-
gorithm is outlined in the following paragraphs and presented in
Appendix B.

In (5) the projection matrix, ProjðJ � JÞ, projecting onto the null-
space of sk (i.e., the space orthogonal to sk), is calculated.

Proj¼ I � sk
�
sTksk

��1
sTk (5)

Where IðJ�JÞ is an identity matrix.
A vector of weights, wðJ�1Þ are calculated in (6). Here a

multiplication by Proj ensures that w is in the null-space of sk.

w¼ProjXTy

ProjXTy
(6)

Scores, tðI�1Þ are calculated in (7) following the NIPALS
algorithm.

t¼Xw (7)

In (8) a vector of loadings, pðJ�1Þ relating to X is calculated.
Again, multiplication by Proj ensures that the loading vector is in
the null-space of sk. In principle, multiplication by Proj can be
omitted in (8), as this will not affect the regression vector estima-
tion. However, if p is used for model interpretation, it may be ad-
vantageous to include Proj in (8).

p¼ProjXTt
t2

(8)

In (9) a loading value, qð1�1Þ relating to y is calculated
following the NIPALS algorithm.
4

q¼ tTy
t2

(9)

Finally, X is deflated in (10) following the NIPALS algorithm.

X¼X � tpT (10)

Step (6) to (10) are iterated for the number of LV . For each
iteration in the algorithm,w, p and q are stored to generate amatrix
of weights, WðJ � LVÞ, a matrix of loadings, PðJ�LVÞ relating to X

and a vector of loadings, qðLV � 1)) relating to y, and bb is calculated
in (11) following the NIPALS algorithm.

bb¼W
�
PTW

��1
q (11)

Due to the incorporation of Proj in (6) and (8), columns of W

and P are orthogonal to sk and consequently bb will also be
orthogonal to sk. Hence, by , obtained using (3), is independent of the
interferent. If signals of more interfering species are known, sk is
substituted with SkðJ � K) in (5), where Sk is a matrix of K known
signals concatenated horizontally.

It is important to note that the additional projections suggested
here operate in the row-space of X. As y is in the column-space of X,
there is no need for processing future x-measurements as a
consequent of the additional projections. This is also pointed out by
Ferr�e and Brown [22]. In principle, the projection could be imple-
mented as a preprocessing of X, as suggested by Hansen [21], Ferr�e
and Brown [22], and Roger et al. [23], using XProj, rather than X, as
input to the conventional NIPALS algorithm. This would return the
same regression vector as using the algorithm presented above.
However, as a projection is a vector-wise operation, there is a
computational advantage of incorporating Proj into the algorithm
if the number of estimated LV≪I=2. MATLAB code for the algorithm
is presented in Appendix B.

3. Materials and methods

3.1. Fructose-maltose model system

A two-constituent model system was made to investigate how
calibration data configuration affect PLS model selectivity. The
model systemwas preparedwith Fructose as analyte of interest and
maltose as interfering species.

Two stock solutions were prepared: one stock solution with D-
(�)fructose (Chem Lab NV, Zedelgem, Belgium) and one stock so-
lution with maltose monohydrate (Merck, Darmstad, Germany).
Fructose and maltose were dissolved in water to make the two
stock solutions of concentrations 1.7 and 0.87 mol/L, respectively.
Samples were prepared by mixing varying amounts of the two
stock solutions and adding water to a total volume of 2 ml. In total,
75 samples were included and divided into three different cali-
bration data sets (Fig. 2).

Each of the three calibration data sets consist of 25 samples (i.e.,
I ¼ 25). The descriptive statistics for the data sets are presented in
Table 1.

The mean values for both fructose andmaltose, and the variance
of fructose are comparable across the three calibration data sets.
However, calibration data set 2 has higher r2 between quantities of
fructose and maltose, as compared to calibration data set 1 and 3.
Moreover, calibration data set 3 has lower variance of maltose
(interfering compound), as compared to calibration data set 1 and 2
(Table 1). Hence, calibration data set 2 and 3 are expected to be
deteriorated as compared to calibration data set 1 (recall Fig.1AeC).

Mid-infrared spectroscopic measurements were obtained on all



Fig. 2. Reference values for calibration data, fructose-maltose model system.
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samples with a WQF-520 FT-IR spectrometer (Beijing Rayleigh
Analytical Instrument Corporation, Beijing, China) using a 6 cm
attenuated total reflection cell. Furthermore, MIRS measurements
of the stock solutions were obtained and normalized to unit con-
centration. The spectroscopic measurements were obtained in
duplicates. The average spectra of duplicates were used for further
analysis. The spectroscopic measurements were obtained in the
wavenumber range from 4,000 to 400 cm�1 with a spectral reso-
lution of 2 cm�1. However, only the region from 1200 to 1000 cm�1

was included.
The MIRS measurements were transformed from reflectance (R)

units to absorbance (A) units (Azlogð1 =RÞ) and preprocessed by
Savitzky-Golay first derivative with a second order polynomial
fitting and a window size of 31 data points [24,25]. The pre-
processed spectral variables, as well as fructose quantities, were
centered prior to calibrating PLS models. Model complexity was
determined by random subset cross-validation with five data splits
and 50 iterations. The minimum RMSE, averaged over all iterations,
was used to identify optimal model complexity.
Table 2
Descriptive statistics of reference values, simulated data.

Calibration data mcy s2
cy

mck s2
ck r2

Calibration data (I ¼ 100) 0 1 0 1 0.85
Test set 1(I ¼ 25) 0 1 0 1 0.85
Test set 2 (I ¼ 25) 0 1 1 1 0.85

I ¼ number of calibration samples; m¼mean value; s2 ¼ variance; r2 ¼ coefficient of
determination between quantities of analyte (cy) and interferent (ck).
3.2. Simulated data

MATLAB code for data simulation is presented in Appendix C.
Data are simulated to mimic a Beer's law system with two

constituents (one analyte and one interferent). One calibration set
and two test sets are simulated. The calibration data consist of 100
samples (i.e., I ¼ 100), while the two test sets each consist of 25
Table 1
Descriptive statistics of reference values, fructose-maltose model system.

Calibration data mfructose(mol=L) s2
fructose (mol2=L

Calibration data 1 (I ¼ 25) 0:3 0:08
Calibration data 2 (I ¼ 25) 0:3 0:08
Calibration data 3 (I ¼ 25) 0:3 0:08

I ¼ number of calibration samples; m ¼ mean value; s2 ¼ variance; r2 ¼ coefficient of d

5

samples (i.e., I ¼ 25). The simulated data were used as a proof of
concept. Therefore, the number of calibration samples was inten-
tionally kept relatively low to challengemodel calibration and force
poor selectivity of the conventional NIPALS algorithm.

Concentrations of the analyte, cyðI�1Þ are randomly drawn
from a uniform distribution on the open interval (0,1) and subse-
quently centered around zero and scaled to unit variance. One
random draw defines cy in the calibration set and another random
draw defines cy in both test sets. Hence, cy is identical for both test
sets.

Concentrations of the interferent, ckðI�1Þ are simulated by
randomly drawing I numbers from a uniform distribution on the
open interval (0,1). These numbers are then adjusted (for compu-
tational details, see Appendix C) to generate a r2 of 0.85 between cy
and ck. Hence, the calibration data are deteriorated (recall Fig. 1).
For the calibration data, ck is centered around zero. For the two test
sets, ck is generated based on the same draw but for test set 1, ck is
centered around zero, whereas for test set 2, ck is centered around
one. For all data sets, ck is scaled to unit variance. Hence, quantities
of the interferent are, as compared to the calibration set, unbiased
for test set 1, whereas they are biased for test set 2. For a summary
of the descriptive statistics, see Table 2.

To generate the response, y noise, e is added to cy for all data sets
following (2), where e � Nð0;0:2Þ. Identical noise is added to the
two test sets making yðI�1Þ of the two test sets identical.

Signals of the analyte, syðJ�1Þ and the interferent, skðJ�1Þ are
gaussian peaks (J ¼ 150) with a peak width s ¼ 20 and centered
around 70 and 80 for sy and sk, respectively. Both sy and sk are
scaled to unit length.

Spectral measurements are simulated following Beer's law as
presented in (1), where E � Nð0;0:02Þ. Again, identical noise is
added to the two test sets.

Partial least squares regression models were calibrated using
the calibration set and tested using the two test sets. Complexity of
the models were predetermined. The simulated data consist of two
constituents. Hence, for conventional NIPALS PLS regression the
model complexity was predetermined to two LV . For the orthogo-
nality constrained regression approach, the pure signal of the
interferent is actively used in the algorithm. Hence, the model
complexity for the orthogonality constrained regression was pre-
determined to one LV .
2) mmaltose (mol=L) s2
maltose (mol2=L2) r2

0:06 2,10�3 0:5
0:06 2,10�3 0:8
0:06 8,10�4 0:5

etermination between quantities of fructose and maltose.
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3.3. Industrial process data

Thirty-two process samples were collected from an industrial
whey protein fractionation process. Beta-lactoglobulin (b-LG) acts
as analyte of interest, with alpha-lactalbumin (a-LA) and casein-
oglycomacropeptide (cGMP) as interfering species. Reference
quantification of b-LG (as well as a-LA and cGMP) was done using a
routine in-house HPLC based method (Arla Foods Ingredients
Group P/S). Eighteen of the 32 process samples were, after being
measured as is, divided into three parts and spiked with a pure in-
house standard (Arla Foods Ingredients Group P/S) of either a-LA, b-
LG or cGMP returning 54 spiked samples. Mid-infrared trans-
mittance measurements of all 86 (32 process plus 54 spiked)
samples were obtained using a MilkoScan FT1 (Foss Analytical A/S,
Hillerød, Denmark). Furthermore, MIRS measurements of pure
standards of b-LG, a-LA and cGMP were obtained in duplicates and
normalized to unit concentration. Each MIRS measurement was
ratioed against a water background measurement. The spectro-
scopic measurements were obtained in the wavenumber range
from 4,996 to 929 cm�1 with a spectral resolution of 4 cm�1.
However, only the region from 3,011 to 929 cm�1 was included.
Furthermore, wavenumbers relating to the dead sea from 2,795 to
1,804 cm�1 and a region from 1,696 to 1,585 cm�1 (relating to O-H
bend of water) were removed.

The MIRS measurements were transformed from transmittance
(T) units to absorbance units (Azlogð1 =TÞ) and preprocessed by
Savitzky-Golay second derivative with a second order polynomial
fitting and a window size of 11 data points [24,25]. The pre-
processed spectral variables, as well as b-LG quantities, were
centered prior to calibrating PLS models.

Fig. 3 shows the reference values of the industrial process data
for the three proteins, b-Lg (analyte of interest), a-La and cGMP
(interfering species). The industrial process data were divided into
two calibration sets and one test set. The first calibration set con-
sists of 25 process samples. The second calibration set consists of
the same 25 process samples with the addition of 15 spiked sam-
ples (i.e., a total of 40 samples). The test set consists of seven pro-
cess samples and 39 spiked samples.

Model complexity was determined by random subset cross-
Fig. 3. Reference values (% w/w), industrial data. A) a-La against b-Lg. B) cGMP against b-Lg.
marked with triangles. Calibration samples are darker color and test samples are lighter c
referred to the Web version of this article.)
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validation with five data splits and 50 iterations. The minimum
RMSE, averaged over all iterations, was used to identify optimal
model complexity. Hereafter, the optimal models were tested using
the test set.

Note that samples with elevated a-La concentrations, in general,
are not found in the calibration samples. Especially, the configu-
ration of low b-Lg concentration and high a-La concentration is
only found in the test set (Fig. 3A). Hence, if a PLS model predicting
b-Lg is not selective towards a-La then it is likely that these samples
will show biased predictions.
3.4. Software

Data were analyzed using MATLAB version R2019a
(9.6.0.1072779, MathWorks Inc., Natick, MA, USA). The conven-
tional NIPALS algorithm [26], presented in Appendix A, was
compared to the orthogonality constrained NIPALS algorithm,
outlined in section 2 and Appendix B.
4. Results

4.1. Fructose-maltose model system

The fructose-maltose model system is used for investigating
how calibration data configuration affect PLS model quality when
using the conventional NIPALS algorithm. Fig. 4A shows the pre-
processed pure signals (normalized to unit concentration) of fruc-
tose and maltose, and Fig. 4B shows the preprocessed sample
measurements. Fructose is a monosaccharide, whereas maltose is a
disaccharide. The preprocessed pure spectra of fructose and
maltose deviate in the region from 1,180 cm�1 to 1,140 cm�1

(Fig. 4A), due to the absorption of a C-O-C glycosidic bridge present
in maltose [27]. Furthermore, the preprocessed pure spectra of
fructose and maltose deviate in the region from 1,080 cm�1 to
1,000 cm�1 (Fig. 4A), which is due to differences in C-C and C-O
stretching vibrations [28].

Table 3 summarizes results obtained from PLS models (con-
ventional NIPALS algorithm) fitted using the three calibration data
sets. Calibration data set 2 is deteriorated by increased r2 between
C) cGMP against a-La. Process samples are marked with circles and spiked samples are
olor. (For interpretation of the references to color in this figure legend, the reader is



Fig. 4. Preprocessed spectra, fructose-maltose model system. A) fructose (analyte) and maltose (interferent) normalized to unit concentration and B) calibration samples.

Table 3
Regression results from fructose-maltose model system.

Calibration data Model complexity (# LV) sTfructose
bb sTmaltose

bb
Calibration data 1 (I ¼ 25) 3 1:12 � 0:02
Calibration data 2 (I ¼ 25) 2 0:91 0:51
Calibration data 3 (I ¼ 25) 1 0:96 0:94

I ¼ number of calibration samples; # LV ¼ number of latent variables;

sTfructose
bb ¼ inner relation between fructose (analyte) signal and the estimated

regression vector; sTmaltose
bb ¼ inner relation between maltose (interfering) signal

and the estimated regression vector.
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quantities of fructose and maltose, and calibration data set 3 is
deteriorated by decreased variation of maltose (interferent). Recall
Table 1 (section 3.1) and Fig. 1.

In principle, the fructose-maltose model system is a rank two
system, but a background signal could be present in the spectro-
scopic measurements even after preprocessing. This may be the
reason why the optimal PLS model, fitted using calibration data 1,
consists of three LV . The optimal PLS model fitted using calibration
data 2 and 3, consists of two and one LV , respectively. This is likely
because the sample measurement spaces collapse in the calibration
data 2 and 3, as also sketched in Fig. 1. Therefore, calibration data 2
and 3 may be well approximated by fewer LV, as compared to
calibration data 1.

The inner relation between the pure fructose signal and the
estimated regression vector is close to one for all models (Table 3).
However, the inner relation between the pure maltose signal and
the regression vector is almost zero for the model fitted to cali-
bration data 1, whereas it is remarkably larger for models fitted to
calibration data 2 and 3 (Table 3). Hence, only the model fitted to
calibration data 1 is selective against maltose. It is likely that the
measurement space of calibration data 1 represents the space
7

spanned by the pure fructose and maltose signals better, as
compared to the measurement spaces of calibration data 2 and 3
(recall Fig.1). This is believed to enable regression vector estimation
in the null-space of the maltose signal when using calibration data
1, as compared to calibration data 2 and 3.
4.2. Simulated data

The simulated data are used to compare the conventional and
the orthogonality constrained NIPALS algorithms when calibration
data have deteriorated. The two algorithms are compared in terms
ofmodel selectivity and hence robustness. Table 4 shows regression
results obtained from the simulated data. The inner relation be-
tween the analyte signal and the estimated regression vector is 0.71
and 0.99 for the conventional and constrained NIPALS algorithm,
respectively (Table 4). Furthermore, the inner relation between the
interfering signal and the estimated regression vector is 0.30 and
0.00 for the conventional and constrained NIPALS algorithm,
respectively (Table 4). Thus, the regression vector obtained from
the constrained NIPALS is fully selective against the interferent,
whereas this is not the case for the regression vector obtained by
the conventional NIPALS algorithm. For the model fitted by the
conventional NIPALS algorithm, the inner relations between the
pure signals and the regression vector are balanced (recall section
2.1). However, this balance (and thereby the model) is solely valid
when data are configurated similarly to the calibration data.
Therefore, the regressionmodel obtained by conventional NIPALS is
less robust, as compared to the model obtained by the orthogo-
nality constrained NIPALS.

This is also confirmed when evaluating the RMSE values of the
two test sets (Table 4). When applying the conventional model, the
RMSE value of test set 1, i.e., the test set that resamples the cali-
bration set, is 0.20, whereas the RMSE value for test set 2, i.e., the
test set with elevated interferent quantities, is 0.36. However, when



Table 4
Regression results from simulated data.

Calibration data Algorithm Model complexity (# LV) sTy
bb sTk

bb Test set 1 prediction
error (RMSE)

Test set 2 prediction
error (RMSE)

Simulated (I ¼ 100) Conventional NIPALS 2 0:71 0:30 0:20 0:36
Simulated (I ¼ 100) Orthogonality constrained

NIPALS
1 0:99 0:00 0:23 0:23

I ¼ number of calibration samples; # LV ¼ number of latent variables; sTy
bb ¼ inner relation between analyte signal and the estimated regression vector; sTk

bb ¼ inner relation
between interfering signal and the estimated regression vector; RMSE ¼ root mean squared error.
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applying the constrained model, the RMSE values of test set 1 and 2
are identical (Table 4).

These observations are further confirmed when investigating
the predictions of both test sets obtained from the conventional
model (Fig. 5A) and the orthogonality constrained model (Fig. 5B).
Fig. 5A shows that predictions of test set 2 are biased upwards, as
compared to test set 1 when applying the conventional model.
Contrary, Fig. 5B shows that predictions of the test sets 1 and 2 are
identical when applying the orthogonality constrained model.
Hence, the constrained model is robust towards changes in the
interferent concentration, whereas this is not the case for the
conventional model.

Table 4 shows that the model fitted by conventional NIPALS
produces a slightly lower RMSE value for the test set 1, as compared
to the model fitted by the constrained NIPALS algorithm. However,
it should be noted that when simulations are repeated, it is inter-
changeable whether the conventional or constrained model pro-
duces lower RMSE (results not shown). Nevertheless, the RMSE
values for the test set 1 are always in the same neighborhood for
the two models. Yet, the results presented in Table 4 for test set 1
confirm that an interferent may provide support in the regression
model and improve the predictions, as also outlined by Brown and
Ridder [4] and Kalivas et al. [29].
4.3. Industrial process data

Fig. 6A shows the preprocessed signals of the pure proteins
Fig. 5. Test set predictions, simulated data. Predictions obtained from A) co
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(normalized to unit concentration), and Fig. 6B shows the sample
measurements. In Fig. 6A the difference in secondary structure can
be observed from the amide II band (1,480e1,575 cm�1), where a-
helix information is found around 1,545 cm�1, while b-sheet in-
formation is found around 1,530 cm�1 [30]. Since a-La consists
mainly of a-helices and b-Lg of b-sheets, a small shift towards lower
energy can be observed for a-La as compared to b-Lg. This is also in
agreement with recent findings [31].

Table 5 shows the regression results obtained on the industrial
process data. Three models are fitted. The first model is fitted by
applying the conventional NIPALS algorithm to the 25 process
calibration samples. The second model is fitted by applying the
conventional NIPALS algorithm to the 40 process and spiked cali-
bration samples. The third model is fitted by applying the orthog-
onality constrained NIPALS algorithm to the 25 process calibration
samples. All models are tested on the same test set, consisting of 46
process and spiked samples.

Model complexity, estimated by cross-validation, is not consis-
tent among the three models (Table 5). When using the conven-
tional NIPALS algorithm, 5 LV are optimal for the model fitted to
solely process samples, whereas 6 LV are optimal when both pro-
cess and spiked samples are used for calibration. The spiked sam-
ples will introduce variation. Therefore, it is likely that space
spanned by the pure protein signals is better represented by the
calibration data consisting of both process and spiked samples,
compared to the calibration data consisting of process samples
only. Consequently, more LV can be estimated. This was also
nventional and B) orthogonality constrained NIPALS regression model.



Fig. 6. Preprocessed spectra, industrial data. A) b-Lg (analyte), a-La (interferent) and cGMP (interferent) normalized to unit concentration and B) samples.

Table 5
Regression results from industrial process data.

Calibration data Algorithm Model complexity (# LV) sT
b�Lg

bb sTa�La
bb sTcGMP

bb Test set prediction
error (RMSE; % w=w)

Process (I ¼ 25) Conventional NIPALS 5 0:85 0:47 � 0:26 0:92
Process þ spiked (I ¼ 40) Conventional NIPALS 6 0:87 0:26 � 0:06 0:58
Process (I ¼ 25) Orthogonality constrained

NIPALS
4 0:85 0:00 0:00 0:33

I ¼ number of calibration samples; # LV ¼ number of latent variables; sT
b�Lg

bb ¼ inner relation between b-Lg (analyte) signal and the estimated regression vector;

sTa�La
bb ¼ inner relation between a-La (interferent) signal and the estimated regression vector; sTcGMP

bb ¼ inner relation between cGMP (interferent) signal and the estimated
regression vector; RMSE ¼ root mean squared error.
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observed for the fructose-maltose model system (Table 3, section
4.1). For the constrained model, the pure spectra of a-La and cGMP
are actively used. Hence, these dimensions will not be handled by
includingmore LV , and therefore, the complexity of the constrained
model is lower.

The inner relation between the b-Lg signal and the regression
vector is approximately the same for the three models. This inner
relation, which should ideally be one, is slightly higher for the
model fitted to both process and spiked samples (Table 5). The
reasons why this inner relation is less than expected could be
multiple. For the conventional models, this inner relation is
balanced with the inner relations between pure spectra of a-La and
cGMP (interfering species) and the regression vector (recall section
2.1). However, this is not the case for the constrained model. The
signals could also be exposed to matrix effects in the samples as
well as noise, which plays a role. The intensity of the pure b-Lg
signal could be underestimated. Furthermore, the least-squares
effect bias will also contribute to this inner relation being less
than one [32]. Another plausible explanation could be that the
models find other unknown support in the calibration data, as also
explained by Brown [3].
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The inner relations between a-La and cGMP (interfering species)
and the regression vectors (Table 5) show that both models fitted
by the conventional NIPALS are sensitive towards the interfering
species, whereas this is not the case for the model fitted by the
constrained NIPALS algorithm. This also manifests in the prediction
errors of the test set. Here, the constrained model has lower RMSE
compared to the conventional models (Table 5).

Fig. 7 shows test set predictions of b-Lg (analyte of interest).
Fig. 7A shows the RMSE of the test set when applying the three
models. When comparing the two models fitted using the con-
ventional NIPALS algorithm, not surprisingly, it is observed that the
model calibrated to both process and spiked samples performs
better than the model calibrated solely to process samples. How-
ever, it is remarkable how well the constrained model performs
even though this model is calibrated only to the 25 process samples
(as well as utilizing the pure spectra of the interfering species). One
should recall that optimal model complexity was chosen by cross-
validating the calibration data. Therefore, the complexity of the
conventional model calibrated to the process samples is 5 LV , even
though Fig. 7A shows that a 3 LV model returns a lower RMSE for
the test set. Similarly, a complexity of 4 LV was chosen for the



Fig. 7. Test set predictions of b-Lg (analyte), industrial data. A) Root mean squared error, RMSE of the three models. Predictions obtained by B) conventional NIPALS calibrated on
process samples (5 latent variable, LV model), C) conventional NIPALS calibrated on process and spiked samples (6 LV model) and D) orthogonality constrained NIPALS calibrated on
process samples (4 LV model). Predictions in B), C) and D) are colored by the concentration of a-LA (interferent).
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constrainedmodel, even though a 5 LV model returns a lower RMSE
for the test set.

Fig. 7BeD shows the test set predictions of b-Lg (analyte of in-
terest) colored by a-La (interfering species). Fig. 7B shows pre-
dictions by the model fitted with the conventional NIPALS
algorithm calibrated using process samples. Predictions of samples
with higher a-La concentrations are clearly biased upwards
(Fig. 7B). Fig. 7C shows predictions by the model fitted with the
conventional NIPALS algorithm calibrated using both process and
spiked samples. Predictions of samples with higher a-La concen-
trations are still slightly biased upwards. Fig. 7D shows predictions
by the model fitted with the constrained NIPALS and calibrated
with the process samples. These predictions are in general unbi-
ased. The results shown in Fig. 7 correspond well with the results
for the inner products between the pure signal of a-La and the
estimated regression vectors presented in Table 5. The inner re-
lations show that the two models fitted using the conventional
NIPALS are sensitive to a-La, with the model calibrated with only
process samples being more sensitive. Furthermore, the con-
strained model is insensitive to the interfering species and this
model is, therefore, to be regarded more robust.
5. Discussion

In quantitative analytical chemistry, most attention is often paid
to the analyte of interest. Nevertheless, to estimate inverse
regression models with good selectivity and robustness, interfering
species are almost equally important. If interfering species are
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poorly expressed in the calibration data, the PLS NIPALS algorithm
will not be able to return a regression vector in the correct null-
space of all interfering species. Therefore, it is important to pay
attention when collecting calibration data. If it is impossible to
collect the calibration data, which span the space of all interfering
compounds, the orthogonality constrained NIPALS algorithm pro-
posed in this paper can be applied. The orthogonality constraint
ensures the estimated regression vector to be in the null-space of
known interfering signals.

It is important to keep in mind that the proposed orthogonality
constrained algorithm is just a small and simple modification of the
conventional NIPALS algorithm. Therefore, the proposed algorithm
benefits from both the hard orthogonality constraint as well as the
softer LV approach used by the conventional NIPALS algorithm.
Hence, it is not necessary to know the pure signals of all interfering
species to apply the orthogonality constraint. If only one or a few
pure signals of interfering species are known, the constraint can be
applied with the known signals, and then the latent variables will
account for the remaining interferences. This also means that
attention still should be paid to the selection of good calibration
samples even though the orthogonality constraint is applied.

There are a few things, which must be considered when
applying the orthogonality constrained algorithm. It may not al-
ways be easy to obtain good pure signals of interfering species.
Nevertheless, it is important that pure interfering signals are cor-
rect and located in the sample measurement space. If the obtained
interfering signals are out of the measurement space, the regres-
sion vector estimated by the orthogonality constrained NIPALS
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algorithm may also be out of the sample measurement space, and
interpretation of the model and predictions could be difficult.

Along these lines, applying the orthogonality constraint will
give extreme importance to the pure signals of interfering species,
and the entire model is adjusted according to these signals.
Therefore, the entire constrained model will be exposed to un-
certainties in the pure signals, whereas the conventional NIPALS
gives almost equal importance (depending on leverage) to all
samples. Therefore, the conventional model will be less exposed to
high uncertainties in a few samples.

If the analyte signal is exposed to a poor signal-to-noise ratio,
predictions obtained from the orthogonality constrained model are
likely to be poor. In such situation, it may be tempting to
compromise model selectivity and use any support provided by
interfering species to minimize the influence of noise and thereby
improve predictions, as proposed by Kalivas et al. [29].

Nevertheless, if a good signal of interfering species can be ob-
tained and the analyte has a good signal-to-noise ratio, it may be
very efficient to use the pure interfering signals more directly. As
extreme importance is given to these pure signals, fewer samples
are needed during calibration.

Furthermore, when applying data compression methods, like
PLS, an analyte prediction is subject to both an estimation error
(variance) and a model error (bias). During model calibration,
increased number of LV will in general lead to lower model errors,
but larger estimation errors. This is also known as the bias-variance
tradeoff [32,33]. The model error directly relates to model selec-
tivity [3]. Hence, during PLS model calibration, improving model
selectivity comes at the expense of larger estimation errors. How-
ever, the orthogonality constrained models handle known inter-
fering signals explicitly and LV will not be estimated to account for
these known signals. Therefore, the constrained models have fewer
LV , as also observed by Ferr�e and Brown [22]. Consequently, better
model selectivity (i.e., model error) may be archived with fewer LV.
For the deteriorated systems studied in this paper, it appears that
the orthogonality constrained NIPALS PLS algorithm returns pre-
dictions with lower prediction error uncertainties, compared to the
conventional NIPALS PLS algorithm.

6. Conclusions

The results in this paper highlight the importance of considering
the space spanned by sample measurements when doing inverse
regression modeling. The sample measurement space should be a
good representation of the space spanned by the pure compound
signals. The sample measurement space may be deteriorated by
several factors, like strong correlations between quantities of the
analyte and interfering species, and compounds present in quan-
tities with relatively low variation. Fitting a PLS model using
deteriorated calibration data may return a model with poor selec-
tivity and robustness.

In this paper, we present amodification of the NIPALS algorithm.
This modification is accomplished by incorporating a projection
matrix into the NIPALS algorithm, which constrains the regression
vector solution to within the null-space of known interfering sig-
nals. The proposed algorithm utilizes known signals of interfering
compounds directly, while handling unknown interferences by
estimating latent variables. This approach has the potential to
improve model selectivity and thereby analyte predictions when
calibration data deteriorate.
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