27 research outputs found

    Shared transcriptional control and disparate gain and loss of aphid parasitism genes

    Get PDF
    This work was supported by the Biotechnology and Biological Sciences Research Council (BB/M014207/1 to SEvdA), European Research Council (310190- APHIDHOST to JIBB), and Royal Society of Edinburgh (fellowship to JIBB).Aphids are a diverse group of taxa that contain agronomically important species, which vary in their host range and ability to infest crop plants. The genome evolution underlying agriculturally important aphid traits is not well understood. We generated draft genome assemblies for two aphid species: Myzus cerasi (black cherry aphid), and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these, and three additional aphid genome assemblies (Acyrthosiphon pisum, D. noxia and M. persicae), we show that aphid genomes consistently encode similar gene numbers. We compare gene content, gene duplication, synteny, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites. Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth. Putative effector repertoires, originating from duplicated and other loci have an unusual genomic organisation and evolutionary history. We identify a highly conserved effector-pair that is tightly physically-linked in the genomes of all aphid species tested. In R. padi, this effector pair is tightly transcriptionally-linked, and shares an unknown transcriptional control mechanism with a subset of approximately 50 other putative effectors and secretory proteins. This study extends our current knowledge on the evolution of aphid genomes and reveals evidence for an as of yet unknown shared control mechanism, which underlies effector expression, and ultimately plant parasitism.Publisher PDFPeer reviewe

    Defining composition and function of the rhizosphere microbiota of barley genotypes exposed to growth-limiting nitrogen supplies

    Get PDF
    The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth

    A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem Cells Revealed by Genomic Profiling

    Get PDF
    Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We observed that a large number of transcripts are underexpressed in hair follicle stem cells when compared to non-stem cells. Importantly, the majority of these downregulated genes are involved in cell cycle. Using bioinformatics tools, we identified the E2F transcription factor family as a potential element involved in the regulation of these transcripts. To determine their functional role, we used engineered mice lacking Rb gene in epidermis, which showed increased expression of most E2F family members and increased E2F transcriptional activity. Experiments designed to analyze epidermal stem cell functionality (i.e.: hair regrowth and wound healing) imply a role of the Rb-E2F axis in the control of stem cell quiescence in epidermis

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Distinct roles for strigolactones in cyst nematode parasitism of Arabidopsis roots

    No full text
    Phytohormones play an essential role in different stages of plant-nematode interactions. Strigolactones (SLs) are a novel class of plant hormones which play an important role in plant development. Furthermore, certain soil-inhabiting organisms exploit this plant molecule as allelochemical. However, whether SLs play a role in plant parasitism by nematodes is as yet unknown. This prompted us to investigate the potential role of SLs in different stages of the nematode life cycle using the beet cyst nematode Heterodera schachtii and Arabidopsis as a model system. We analyzed the effect of SLs on cyst nematode hatching, host attraction and invasion, and the establishment of a feeding relation upon infection of the SL deficient mutant max4-1 and the SL signaling mutant max2-1. In addition, infection assays were performed under phosphate shortage to enhance SL production and in the presence of the synthetic SL analog GR24. From this study, we can conclude that SLs do not contribute to cyst nematode hatching at the levels tested but that they do play a role in host attraction and subsequent invasion in a MAX2 dependent manner. Furthermore, we observed that increased levels of exogenous and endogenous SLs change the root invasion zone. Upon root infection, cyst nematode development was enhanced in both the max2-1 and max4-1 mutants due to the formation of enlarged feeding cells. These data provide evidence for distinct roles of SLs during cyst nematode parasitism of plant roots
    corecore