4 research outputs found
Measured GFR in murine animal models: review on methods, techniques, and procedures
Animal models; Glomerular filtration rate; Kidney damageModels animals; Taxa de filtració glomerular; Dany renalModelos animales; Tasa de filtración glomerular; Daño renalChronic kidney disease (CKD) is one of the most common chronic diseases worldwide, with increasing rates of morbidity and mortality. Thus, early detection is essential to prevent severe adverse events and the progression of kidney disease to an end stage. Glomerular filtration rate (GFR) is the most appropriate index to evaluate renal function in both clinical practice and basic medical research. Several animal models have been developed to understand renal disease induction and progression. Specifically, murine models are useful to study the pathogenesis of renal damage, so a reliable determination of GFR is essential to evaluate the progression of CKD. However, as in clinical practise, the estimation of GFR in murine by levels of serum/urine creatinine or cystatin-C could not be accurate and needed other more reliable methods. As an alternative, the measurement of GFR by the clearance of exogenous markers like inulin, sinistrin, 51Cr-EDTA, 99mTc-DTPA, 125I-iothalamate, or iohexol could be performed. Nevertheless, both approaches—estimation or measurement of GFR—have their limitations and a standard method for the GFR determination has not been defined. Altogether, in this review, we aim to give an overview of the current methods for GFR assessment in murine models, describing each methodology and focusing on their advantages and limitations.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is supported by funding from the Instituto de Salud Carlos III with the following grants: AERR is a recipient of a contract from the Sara Borrell programme (C21/00142) and STT of PFIS FI20/00147
HIF1 alpha Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis
Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.status: publishe
HIF1α Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis
Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.ISSN:2666-3864ISSN:2211-124