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Abstract
Chronic kidney disease (CKD) is one of the most common chronic diseases worldwide, with increasing rates of morbidity 
and mortality. Thus, early detection is essential to prevent severe adverse events and the progression of kidney disease to an 
end stage. Glomerular filtration rate (GFR) is the most appropriate index to evaluate renal function in both clinical practice 
and basic medical research. Several animal models have been developed to understand renal disease induction and progres-
sion. Specifically, murine models are useful to study the pathogenesis of renal damage, so a reliable determination of GFR 
is essential to evaluate the progression of CKD. However, as in clinical practise, the estimation of GFR in murine by levels 
of serum/urine creatinine or cystatin-C could not be accurate and needed other more reliable methods. As an alternative, the 
measurement of GFR by the clearance of exogenous markers like inulin, sinistrin, 51Cr-EDTA, 99mTc-DTPA, 125I-iothalamate, 
or iohexol could be performed. Nevertheless, both approaches—estimation or measurement of GFR—have their limita-
tions and a standard method for the GFR determination has not been defined. Altogether, in this review, we aim to give an 
overview of the current methods for GFR assessment in murine models, describing each methodology and focusing on their 
advantages and limitations.
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Introduction

Chronic kidney disease (CKD) is a progressive disease 
characterized by a gradual loss of kidney function over time 
[17, 42, 59]. CKD can be asymptomatic until late stages; so 
early detection is essential to prevent disease progression 
and related adverse events [22, 25]. Several aspects of the 
pathogenesis of CKD are not completely elucidated. In this 
regard, murine models are useful to study the pathogenesis 
of renal damage and in particular to understand the molecu-
lar background of disease progression in CKD [13, 31, 63].

Glomerular filtration rate (GFR) is considered the best 
index of renal function [15, 23, 53]. Accordingly, a reliable 
evaluation of GFR is important both in the clinics and in 
animal models of disease. In murine models, the assessment 
of GFR is useful to evaluate the degree of renal dysfunction, 
disease progression, and benefits of drugs designed to treat 
renal damage. In mice and rats, renal function can be esti-
mated by the levels of serum creatinine and by 24 h creati-
nine [64]. On the other hand, GFR can be directly measured 
by the clearance of exogenous markers like inulin, sinistrin, 
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51Cr-EDTA, 99mTc-DTPA, 125I-iothalamate, or iohexol [1, 
4, 27, 40]. Both approaches—estimation and measurement 
of GFR—have advantages and disadvantages. The estima-
tion is simple but not always reliable and the measurement 
is reliable but cumbersome. In this review, we will describe 
the available methods and techniques used to measure kid-
ney function in murine models with a special focus on their 
applicability, utility, advantages, and disadvantages.

Characteristics of a marker of renal function

To be used as a marker of GFR, a molecule must fulfill sev-
eral criteria, such as: to have a constant production, not to 
be bound to proteins or degraded by metabolism, be freely 
filtered by the glomerulus, and have no interaction with renal 
tubular cells i.e. secretion or re-absorption. The measure-
ment of the clearance of such a compound allows a reliable 
GFR evaluation. However, no endogenous substance meets 
all these characteristics simultaneously, as will be discussed 
later in the review. Conversely, a number of exogenous sub-
stances, such as fructose polymers (inulin, sinistrin), metal 
chelates (51Cr-EDTA, 99mTc-DTPA), and tri-iodobenzene 
derivatives (e.g. iohexol, iothalamte, iopamidol, iopromide), 
have been proven to act as an ideal marker.

Estimation of GFR based on creatinine

Serum creatinine

It is the most used endogenous marker used to estimate renal 
function in clinical practice and research, as well as in ani-
mal models [11, 37]. Creatinine is a waste product of normal 
muscle metabolism, an organic compound derived from the 
breakdown of creatine, a nitrogenous organic acid synthe-
sized in the liver and located mainly in the muscles. Creati-
nine is not bound to proteins and is freely filtered by glomer-
uli [61] but its synthesis is not constant since it is determined 
by the daily intake of protein and muscle turnover. Moreo-
ver, there is relevant renal tubular handling of the molecule 
i.e. secretion and reabsorption [7, 12]. All these conditions 
limit the utility of creatinine as a marker of renal function. 
In particular, in mice, creatinine tubular secretion may reach 
50% of total creatinine clearance, reducing plasma creati-
nine levels and consequently leading to the overestimation 
of GFR [12]. Also, gender differences in tubular secretion 
have been described: males may secrete more creatinine than 
females [12]. This may lead to flaws in the estimation of 
GFR between male and female animals [12]. Vallon et al. 
have demonstrated that OAT3 (organic anions transporter 
isoform 3) contributes to this tubular creatinine secretion in 
rodents [58]. In addition, kidney disease promotes creatinine 

tubular secretion, which may mask the reduction in GFR 
during the evolution of renal disease [7, 12]. These consid-
erations must be taken into account when using creatinine 
as a marker of renal function in mice models.

Also, the measurement of creatinine has largely been 
challenging. The first method, developed in 1886, to meas-
ure creatinine was the alkaline picric Jaffé reaction (colori-
metric method) [18]. The interference of this method with 
chromogens i.e. bilirubin, glucose, or hemoglobin has led 
to inaccuracies in humans [50, 56]. In rodents, non-specific 
chromogens may cause a five-fold overestimation of cre-
atinine [11, 28]. Several alternative methods have been 
adapted to measure serum creatinine. Dunn et al. developed 
an HPLC (high-performance liquid chromatography) assay 
able to measure low levels of creatinine in 25uL of plasma 
in mice and correlated the creatinine clearances with inu-
lin-based clearances [11]. Later, Yuen et al. simplified this 
method using a smaller sample volume without acid addition 
in the acetonitrile precipitation step [64]. Thus, HPLC has 
been recommended as a precise method to measure creati-
nine in mice. However, the HPLC assay is time-consuming 
and expensive and so, has been rarely used. The enzymatic 
determination, which is considered nowadays as the refer-
ence method in rodents, was validated in 2007 [19]. This 
method is based on a cascade of reactions with the aid of 
creatininase, creatinase, and sarcosine oxidase and has good 
agreement with the method using HPLC [19]. However, 
despite these improvements in the measurement techniques, 
the intrinsic limitations of creatinine, i.e. tubular secretion, 
dependence on muscle metabolism, still remain. For the 
scope of this review, we measured serum creatinine in 180 
mice that underwent measured GFR by the plasma clear-
ance of iohexol-DBS technique [40] (Fig. 1). The agreement 
between creatinine and measured GFR was weak. In fact, 
a single value of serum creatinine was associated with a 
wide range of GFR. For example, a value of 0.10 mg/dL of 
creatinine is associated with a wide range of GFR from 150 
to 600 μl/min, indicating about 400% variability (Fig. 1). 
Of note, this error is larger than in humans, where the vari-
ability between creatinine and measured GFR was reported 
to be as large as 200% [37]. All the above indicates that 
creatinine itself is far from being an ideal marker of GFR 
leading to relevant over and underestimation of real renal 
function in rodents. Clearly, this may jeopardize research in 
animal models of renal disease.

24‑h creatinine clearance

This method has been widely used to assess GFR in animal 
models. However, it must be remembered that the limitations 
of serum creatinine as a marker of renal function (Fig. 1) 
affect the precision and accuracy of the 24-h collection in 
reflecting renal function [7, 12, 58]. Urine sample collection 
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is time-consuming and stressful for the animals, both facts 
that may affect the evaluation of renal function. Rodents 
must be kept for 2-3 days in metabolic cages before starting 
the 24-h collection [54] to acclimate. Finally, blood samples 
are needed to measure serum creatinine. For blood extrac-
tion animals may be sedated or anaesthetized depending 
on different protocols [7, 8] to minimize animal stress. The 
clearance is calculated as the urine concentration of cre-
atinine multiplied by the volume of urine during 24-h and 
divided by the concentration of creatinine in serum.

All the above indicates that creatinine is not an ideal 
marker of GFR in rodents. The agreement between creati-
nine and real renal function is very poor and the variability 
is high. Thus, in terms of investigation, creatinine and cre-
atinine clearance are not reliable methods to evaluate GFR 
in rodents. The limitations of creatinine pertain more spe-
cifically to models aimed at studying CKD than to those of 
AKI. CKD is characterized by a progressive and gradual loss 
of kidney function over time. During this period, the kidneys 
can undergo various adaptive responses to maintain over-
all function like hypertrophy and hyperfiltration, which can 
partially mask the rise in serum creatinine levels. This could 
result in delayed or less pronounced increases in creatinine, 
making it a less sensitive marker for detecting early stages of 
CKD. On the other hand, AKI involves a sudden and severe 
loss of kidney function. The decline in renal function occurs 
rapidly, reducing the time of compensatory mechanism to 
mask the rise in creatinine levels. Thus, creatinine is gener-
ally considered a more sensitive marker for detecting AKI 
compared to CKD.

Estimated GFR by cystatin‑C

Cytatin-C (CysC) is a low molecular weight (13KDa) pro-
tein of the super-family of cysteine protease inhibitors. It is 
produced at a constant rate by a housekeeping gene that is 

present in all nucleated cells. Cystatin-C is freely filtered 
across the glomerulus. However, it is reabsorbed and metab-
olized by tubular epithelial cells, with precludes the use of 
24-h urine collection for clearance analysis. Also, CysC 
levels are affected by age, male, height, subclinical inflam-
mation, central adiposity, diabetes, and metabolic syndrome, 
among others [20, 39, 55]. Even so, in animal models, CysC 
has been used to determine renal damage. Song S et al. were 
the first to use cystatin-C as a reliable method to measure 
renal function in mice models. In this study, they compared 
the sensitivity of creatinine, urea nitrogen (BUN), and CysC 
in the detection of acute renal failure in mice. They observed 
that CysC was more sensitive than the others [52]. Worner S 
et al. used plasma CysC levels to determine aprotinin-asso-
ciated kidney damage [60]. Leelahavanichkul A et al. deter-
mined that CysC was a better early detection biomarker of 
renal damage than creatinine in sepsis. However, this result 
was influenced by non-renal factors limiting the accurate 
prediction of GFR in sepsis animal models [21]. Thus, CysC 
would not be an ideal marker to measure renal damage since 
there are non-renal factors that cause its modification. Even 
so, CysC has advantages since it is easy to measure and very 
sensitive to ELISA measurement [62].

Measuring GFR by an exogenous marker

Clearance of inulin

Inulin is a polymer of fructose with a molecular weight of 
5200 Da [15]. It is found in plants like chicory and garlic, 
among others that use inulin as energy. Since the pioneer-
ing studies of Homer Smith in 1951 the urinary and plasma 
clearances of inulin have been considered a classic method 
to measure renal function in humans [51]. Later, inulin 
has also been considered as the reference method to meas-
ure GFR in rodents. In humans and animals, inulin is not 

Fig. 1   Relationship between 
serum creatinine and meas-
ured glomerular filtration rate 
in C57BL/6J mice (n=180). 
Measured glomerular filtration 
rate (GFR) was assessed by 
plasma clearance of iohexol – 
Dried blood spot (DBS). Serum 
creatinine was measured by an 
automated enzymatic method 
in the Cobas 8000 equipment 
(Roche Diagnostic)
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metabolized, is bound to plasma proteins, and is freely fil-
tered by the glomeruli without being reabsorbed or secreted 
by tubular cells [49].

Despite these major advantages, the method has two 
major limitations: the cost of inulin is high and the pre-ana-
lytical procedures to measure the molecule are cumbersome. 
Inulin can be used un-labelled or labelled with radioactive 
markers (3H or 14C) or fluorescein-isothiocyanate (FITC). In 
any case, the solubility in water of inulin is poor and requires 
extensive treatment to prepare the solution for injection. The 
molecule must be dissolved in saline, filtered, heated at high 
temperatures, and dialyzed overnight to remove low-weight 
fragments inulin and residual free radioactive markers. 
Finally, the solution is injected either in a single intrave-
nous bolus [41] or continuous infusion [6, 26] and plasma 
and/or urine are collected at different time points to calcu-
late the clearance. Animals must be anaesthetized; bladder 
catheterization is needed to collect urine and several blood 
samples are required. Then, un-labelled inulin is measured 
by HPLC whereas, for radioactive-labelled inulin, a count 
emitting isotope radioactive is needed. All these steps make 
the technique not only cumbersome but also prone to errors, 
a fact that has not frequently been considered before.

In 2003, Qi et al. published the use of FITC-inulin as a 
method to measure GFR in mice [38]. Dialyzed FITC-inulin 
was injected retro-orbitally under light anaesthesia, and then, 
20 μL of blood was collected via the saphenous vein at a 
different time point in conscious animals. Then, a fluorom-
eter was used to determine fluorescence in blood and urine. 
Clearly, this approach is simpler than standard inulin. Nev-
ertheless, FITC-labelled inulin has the same requirements 
for the preparation solution for injection i.e. the molecule 
has to be dissolved, filtered, heated at high temperature, 
dialyzed overnight, and filtered again. Thus, independently 
of the method used, i.e. inulin alone, bound to radioactive 
isotopes or fluorescein, the whole procedure is tedious and 
laborious (Table 1, Fig. 2). 

Sinistrin: the new inulin?

Sinistrin is a polyfructosan extracted from the roots of 
Urgea maritime and has a lower molecular weight (3500 
Da) than inulin. To overcome the poor water solubility of 
inulin, sinistrin was introduced. Sinistrin, like inulin, can 
be used and labelled as fluorescein and most studies using 
sinistrin are complex to FITC. Sinistrin and FITC-sinistrin 
are highly soluble in aqueous solvents at room temperature 
and do not require heating to prepare the solution injec-
tion (Table 1; Fig. 2). Furthermore, it does not need to be 
dialyzed to remove non-dissolved fragments. Thus, FITC-
sinistrin has been proposed as a simpler method to measure 
GFR [34–36]. Also, FITC-sinistrin has been even adapted 
to be measured by transcutaneous devices [44]. Ta
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Transcutaneous methods for GFR measurement

In these methods, a molecule with a fluorescent marker is 
injected and the determination of GFR relies on the lecture 
of the change in the fluorescence over time by a device 
placed over the skin of the animal. Most of the available 
studies use FITC sinitrin as the exogenous marker. The 
decay of fluorescence is used to calculate the half-life of 
the elimination of the marker and then, you need con-
version half-life data into a GFR (mL/min) because the 
transcutaneous method results in relative emission signals 
which do not allow conversion into concentration using 
standard curves. The main advantage of these methods is 
that they are non-invasive (Table 1, Fig. 2). Schock-Kusch 
et al. reported its use for the first time in rats in 2009 [44]. 
In this study, a femoral vein and artery were catheterized 
in animals for the injection of FITC-sinistrin and blood 
sampling, respectively. Animals were anaesthetized and 
the fluorescence was tested with a small imager placed 
over a depilated ear. Simultaneously the plasma clearance 
FITC-sinistrin was measured using an enzymatic method 

and this clearance was used to calculate the conversion 
factor as follows: GFR (mL/min/100g b.w) = 31.26 
(mL/100g b.w.) / t1/2 (FITC-S) (min) determined by the 
transcutaneous method. In 2011, the same group optimized 
the technique using an optical device fixed on a depilated 
region on the back of the rat. This device was built up 
from a light-emitting diode with an emission maximum for 
FITC at 480 nm, a photodiode that detects the emitted light 
at 520 nm. Also, the device has an internal memory to 
save the information. Before injection, the device detects a 
background signal and after injection, the sampling rate is 
about 60 measurements per min. In 2012, the same group 
implemented this technique in conscious mice and recalcu-
lated the conversion factor as 14616.8 (μL/100g b.w.) [46].

This technique has been used in diverse mice models such 
as healthy mice, nephrectomised mice, and animals with 
nephronophthisis [46]; C57BL/6, Balb/c, SV129, NMRI 
mice [43] lean and obese C57BL/6J mice [29] and animals 
lacking renal angiotensin-converting enzyme (ACE) [16]. 
Also, it was used in rat models like healthy rats as well in 
those with unilateral nephrectomy, 5/6 nephrectomy or rats 

Fig. 2   Schematic representation of the main methods (exogenous 
markers) to measure renal function in rodents. All of them have 
three steps: (1) The animal must be anaesthetized or sedated for (2) 

the administration of the tracer or the placement of the measurement 
device in the animal, and the last step (3) is the analysis that will be 
different depending of the marker used
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with cystic kidney diseases [44] or the Dahl salt-sensitive 
rats [5].

However, the major limitation of this technique is that it 
is an indirect method for measuring GFR. The marker excre-
tion kinetics is evaluated by the analysis of the change in the 
relative fluorescence over time, and not as the decrease in 
the absolute concentrations of the marker. Thus, conversion 
factors are needed to estimate GFR values, which may lead 
to uncertainty in GFR results. Maybe, due to that limitation, 
diverse articles showed low precision and accuracy between 
GFR measured with transcutaneous devices versus the meth-
ods using plasma samples. In rats, Schock-Kusch et al. found 
a weak correlation, i.e. r2= 0.59 and low limits of agreement 
from 0.3 to −0.3 ml/min/100g [45]. In mice, a poor agree-
ment for the two-compartment analysis was also reported: 
r2 = 0.33 with wide limits of agreement from 582 to −609.1 
μL/min/100g [46]. A similar bias was found comparing five 
groups of male mice [43]. Moreover, a recent study com-
pared GFR measurements by transcutaneous and plasma 
methods in obese and lean animal mice without showing 
a clear correlation between the methods in obese animals 
[5]. Thus, this approach may not be useful for all types of 
diseases. Another limitation to consider is the high cost of 
the device (1000$) and the low durability of its battery (only 
2 h), which makes it unfeasible for studies with a high num-
ber of animals. The major advantage of this method is its 
independence of blood/urine sampling and laboratory assays 
allowing the evaluation of renal function almost in “real-
time”. Future device optimization could make this technique 
an effective method to GFR measure in conditions where 
high precision and accuracy are not required.

Radiolabelled tracers

Since the 1970s, the use of radioactive markers has been 
used to measure GFR both in clinical practice animal mod-
els. Although frequently used in humans, few groups have 
worked with these methods in animal models. The two most 
used radiolabelled markers are ethylenediaminetetraacetic 
acid with radioactive chromium-51 (51Cr-EDTA) and dieth-
ylene triamine pentaacetic acid with radioactive techne-
tium-99 (99mTc-DTPA). 51Cr-EDTA has a molecular mass 
of 292 Da, and 99mTc-DTPA has a molecular mass of 393 Da 
and, due to their low molecular mass, are freely filtrated by 
glomerulus [48]. The method consists of measuring plasma 
and urine clearance of single injections of these radiola-
belled compounds through the tail vein or using intraperi-
toneal injections [30]. Then, blood and urine samples are 
taken at several time points and the marker is counted using 
a gamma counter and GFR is calculated.

99mTc-DTPA has been used in healthy male Wistar rats as 
well as in animals with chronic kidney disease or nephritic 
syndrome induced by doxorubicin [30]. The major limitation 

of this technique is derived from the use of radioisotopes. 
Radiolabelled reagents require special licensing and are dif-
ficult to store; the waste is difficult to handle and danger-
ous for staff who are exposed to it. Another limitation is 
that 99mTc can dissociate from DTPA and that up to 13% of 
99mTc-DTPA can bind to plasma proteins, which translated 
into an underestimation of GFR [9]. Another limitation of 
9mTc-DTPA is that results seem to vary greatly depending 
on the distributor of the radiolabelled isotope. Moreover, 
the main manufacturer of 51Cr-EDTA in Europe has recently 
ceased its distribution [1]. Therefore, when possible other 
methods should be preferred to measure GFR in rodents.

Non‑radiolabelled contrast media

Iothalamate

Iothalamate is an ionic contrast, derived from the tri-iodo-
benzoic acid with a molecular weight of 637 KDa. This mol-
ecule has been seldom used for GFR assessment in murine 
models. Bell et al. developed a rapid and sensitive HPLC 
method to detect iothalamate and para-aminohippuric acid in 
the serum and urine of rats [2]. The analytical assay allowed 
a reliable and simultaneous measurement of both GFR and 
renal blood flow. However, the procedure suffered from two 
important drawbacks. Firstly, a surgical preparation of the 
animals was required followed by a recovery period from 
anaesthesia before starting the intravenous administration 
of the markers by continuous infusions in the jugular vein. 
Secondly, sampling was performed from a cannula in the 
carotid artery and urine collection. For these reasons, the 
procedure could be considered difficult and cumbersome.

Iohexol/iohexol‑DBS

Iohexol (Omnipaque™, GE Healthcare) is a non-radioactive, 
iodinated, non-ionic monomeric, and water-soluble molecule 
widely used as a contrast medium [24, 32]. In comparison 
with the first generation of contrast agents, iohexol has 
lower osmolarity and toxicity and better safety. Iohexol is 
excreted un-metabolized by glomerular filtration, without 
being reabsorbed or secreted by renal tubular cells [27]. Nei-
ther hepatic metabolism nor interaction with blood cells has 
been described [3, 10]. In humans, the use of the clearance 
of iohexol as a reference method to measure GFR has been 
established almost 30 years ago [3, 14].

During the last decade, some groups implemented the 
clearance of iohexol in rodents. In general, the method con-
sists of the i.v. injection of a single dose of iohexol, followed 
by the extraction of several blood samples from the tip of 
the tail to perform the pharmacokinetic analysis. Iohexol 
is measured by chromatographic analysis using HPLC. 
Schulz et al. described the plasma clearance of iohexol in 
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rats in 2014 [47] using liquid-chromatography-electro-
spray-mass-spectrometry (LC-ESI-MS). They used male 
HsdRCCHan:WIS rats, which were administered with dif-
ferent doses of iohexol by tail vein, and the animals were 
sacrificed at different time points after iohexol infection 
(15, 30, 60, and 90 min) to obtain blood samples. Passos 
et al. validated the plasma clearance of iohexol in rats [33] 
versus the “classic” gold standard, the clearance of inulin, 
using capillary electrophoresis. They observed a correlation 
between iohexol clearance and inulin clearance (r=0.792). 
However, the procedure required a large volume of blood 
because the molecule was determined in plasma or serum 
instead of blood and the animals were handled under anaes-
thesia. Later, Carrara et al. developed a feasible, safe, and 
reliable protocol to determine the GFR in conscious rats 
[4]. A single intravenous injection of iohexol (129.4 mg) 
was administered and only 4 blood samples of just 15 μL 
were drawn from the tail vein at different times from the 
injection (20, 40, 120, and 140 min. In line with this study, 
Luis-Lima et al. described a simplified method in conscious 
mice [27]. In brief, 6.47 mg of iohexol was injected intra-
venously into the tail vein of sedated mice. Then, reduced 
volumes of blood samples (10μL per point) were collected 
at 15, 35, 55, and 75 min after injection from the tip of the 
tail in conscious and unrestricted mice. Finally, iohexol was 
measured by HPLC-UV in total blood applying a correc-
tor factor of 0.89. The results of the reference (two-com-
partment model) and simplified method (one-compartment 
model) were comparable. This approach was tested in mice 
with different levels of renal function, from normal GFR to 
animals with a heminephrectomy and a model of CKD [27]. 
This approach uses a limited volume per sample (10μL), a 
relevant aspect for the mice that also allows the repetition 
of the test to evaluate renal function changes over time. In 
2021, Rodríguez-Rodríguez AE et al. further simplified the 
procedure by the use of dried blood spot (DBS) sampling 
without losing accuracy and precision [40]. Blood samples 
from the tip of the tail were collected using heparinized cap-
illary tubes of 5μl at different time points: 15, 30, 45, 60, and 
75 min after injection, deposited on filter paper (Whatman 
903, GE Healthcare, Cardiff, UK) and then allowed to dry 
for at least 24h. The total amount of blood taken is very low 
(25μL), which is a specific advantage of the DBS approach. 
Then, the extraction of iohexol from the filter paper was with 
5% perchloric acid, ultrasonicated, and centrifuged [40]. The 
iohexol blood concentration from DBS samples was deter-
mined by HPLC (Table 1, Fig. 2). This DBS method was 
validated with the reference method in plasma, showing high 
accuracy and precision (concordance correlation coefficient 
(CCC) was 0.996). Taken together, the DBS technique rep-
resents a methodological simplification to determine GFR in 
small rodents improving animal welfare according to Russell 
and Burch’s 3Rs model for animal research without losing 

precision. Turner et  al. validated a two-sample iohexol 
plasma clearance method in rodents to evaluate an early 
decline in GFR compared to inulin method and endogenous 
markers such as creatinine, urea, and cystatin-C [57]. After 
a single intravenous injection of 25 mg/kg of iohexol, blood 
samples were taken at 11 time points (2, 5, 10, 20, 30, 60, 
90, 120,180, 240, and 300 min). Surprisingly, the GFR result 
obtained from the analysis of two samples (30 and 90 min) 
was closely approximated at the 11 samples clearance, with 
very high accuracy and almost no loss of precision. This 
way, the authors showed a simplified two-sample determi-
nation of iohexol as a feasible routine method to evaluate 
GFR. However, such a limited number of samples may lead 
to high errors in GFR estimation due to potential random 
errors in iohexol determination. Conversely, blood timing 
(which seems very crucial in this 2-point procedure) and/
or blood drawing errors resulting in “outsiders” points may 
easily identified and ruled out in a multiple points procedure, 
thus leading to a more reliable GFR assessment.

Conclusions

GFR measurement has been intensively studied in both 
humans and animals with a common goal: to seek out an 
affordable, reproducible, simple, rapid, safe, and comfort-
able GFR procedure. This task has been proven to be par-
ticularly demanding in small animals (rodents). The need 
to overcome the difficulties related to urine collection and 
reducing the amount of blood samples and the need to avoid 
the use of radiolabelled substances to improve the safety 
of both animals and laboratory personnel were the most 
relevant reasons that acted, along these last years, as driv-
ing forces toward the miniaturization of the procedure. As 
shown in Table 1, the methods to measure GFR in animal 
models are diverse and all of them have advantages or dis-
advantages. The endogenous markers, like creatinine or 
cystatin-C, are inaccurate and the exogenous markers have 
been developed to replace them. The radiolabelled markers 
(99mTc-DTPA and 51Cr-EDTA) are cheap but not safe and 
should be replaced by another method. Inulin is considered 
the gold standard to measure GFR and is widely used but 
it is operationally complex and expensive. Iothalamate is 
less accurate than inulin but more affordable and easier to 
use. Iohexol is considered to be a more accurate and reliable 
method. It is a safe method and has been validated in differ-
ent animal models of rats and mice. Fluorescence markers 
like FITC-inulin or FITC-sinistrin, are widely used because 
are considered to be safe and effective. Moreover, FITC-
sinistrin is used as a marker in the transcutaneous method 
to measure GFR. This method is non-invasive, which may 
reduce the stress on the animal and eliminate the need for 
blood sampling. Additionally, this method has the potential 
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to allow for real-time monitoring of GFR changes in ani-
mals. Overall, while the transcutaneous method of meas-
uring GFR in rodents shows promise, further research is 
needed to establish its accuracy and reproducibility, and it 
should be used in conjunction with other established meth-
ods to ensure the most accurate and reliable measurement 
of GFR.

In conclusion, the choice of method for GFR measure-
ment in rodents should depend on the specific research 
question, available resources, expertise of the researcher, 
and the safety and welfare of the animals. It is important to 
remember that any procedure performed on animals must 
be performed ethically and justified by scientific research.
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