167 research outputs found

    Evaluation of testicular echotexture with Ecotext as a diagnostic method of testicular dysfunction in stallions

    Get PDF
    This study aimed to assess if Ecotext, a new software for evaluation of testicular echotexture, is a good method for diagnosis of stallions with testicular dysfunction (TD). Relationships between Ecotext parameters and sperm motility and production, testicular volume, and testicular blood flow were also studied. Ecotext provides a total of six echotexture parameters: Ecotext 1 (black pixels), 2 (white pixels) and 3 (grey pixels), and another 3 parameters related to hypoechogenic areas: Ecotext tubular density (ETD), Ecotext tubular diameter (ETd), and Ecotext tubular area (ETA). Stallions (n = 33) were assessed using proven diagnostic techniques (spermiogram, B-mode and Pulse Doppler ultrasound), and subsequent analysis with Ecotext. Animals were classified as “control stallions” (n:21, acceptable semen quality), and “stallions with TD” (n:12, poor semen quality (TM < 60%, PM < 45% and total nÂș of sperm with PM < 2000 × 106 spz), that were subdivided into “induced TD group” (immunized, anti-GnRH vaccine) and “acquired TD group”. The acquired TD group showed differences in all Ecotext parameters in relation to controls (Ecotext 1:0.11 ± 0.17 vs 2.82 ± 2.52, Ecotext 2:1584.0 ± 575.8 vs 388 ± 368.2, Ecotext 3:134.2 ± 9.26; ETA: 2.14 ± 0.59 vs 5.40 ± 1.90; ETd: 65.66 ± 6.27 vs 86.93 ± 10.65 and ETD: 92.35 ± 11.24 vs 132.10 ± 16.35, p ≀ 0.001). Results suggest acquired TD stallions were suffering testicular degeneration with loss of architecture and function as all Ecotext parameters were altered in relation to controls. Induced TD horses only showed a reduction in ETD (116.2 ± 8.59 vs 132.10 ± 16.35, p ≀ 0.001), despite all sperm parameters being worse. These findings suggested immunized stallions probably only experience an acute loss of testicular functionality and parenchyma architecture is likely not affected since differences in Ecotext parameters with control stallions were not detected. ETD was the best parameter to identify animals with TD (AUC: 0.84, optimal cut-off value of 124.3 seminiferous tubules/cm2). Correlations were found between ETD and Doppler indices (PI: 0.60; RI: 0.47 p ≀ 0.001), total testicular volume (r: 0.48; p ≀ 0.05) and sperm motility (TM:0.51; and PM:0.54; p ≀ 0.001) and production (r:0.51; p ≀ 0.001). In summary, Ecotext could identify changes in testicular echotexture of stallions with TD. Results open the possibility for new research focused on establishing the relationship between Ecotext parameters and histomorphometry features in stallion testes

    Euclid preparation XVIII. The NISP photometric system

    Get PDF
    Euclid will be the first space mission to survey most of the extragalactic sky in the 0.95–2.02 ”m range, to a 5 σ point-source median depth of 24.4 AB mag. This unique photometric dataset will find wide use beyond Euclid’s core science. In this paper, we present accurate computations of the Euclid YE, JE, and HE passbands used by the Near-Infrared Spectrometer and Photometer (NISP), and the associated photometric system. We pay particular attention to passband variations in the field of view, accounting for, among other factors, spatially variable filter transmission and variations in the angle of incidence on the filter substrate using optical ray tracing. The response curves’ cut-on and cut-off wavelengths – and their variation in the field of view – are determined with ∌0.8 nm accuracy, essential for the photometric redshift accuracy required by Euclid. After computing the photometric zero points in the AB mag system, we present linear transformations from and to common ground-based near-infrared photometric systems, for normal stars, red and brown dwarfs, and galaxies separately. A Python tool to compute accurate magnitudes for arbitrary passbands and spectral energy distributions is provided. We discuss various factors, from space weathering to material outgassing, that may slowly alter Euclid’s spectral response. At the absolute flux scale, the Euclid in-flight calibration program connects the NISP photometric system to Hubble Space Telescope spectrophotometric white dwarf standards; at the relative flux scale, the chromatic evolution of the response is tracked at the milli-mag level. In this way, we establish an accurate photometric system that is fully controlled throughout Euclid’s lifetime

    Euclid preparation. XVIII. The NISP photometric system

    Full text link
    Euclid will be the first space mission to survey most of the extragalactic sky in the 0.95-2.02 ÎŒ\mum range, to a 5σ\sigma point-source median depth of 24.4 AB mag. This unique photometric data set will find wide use beyond Euclid's core science. In this paper, we present accurate computations of the Euclid Y_E, J_E and H_E passbands used by the Near-Infrared Spectrometer and Photometer (NISP), and the associated photometric system. We pay particular attention to passband variations in the field of view, accounting among others for spatially variable filter transmission, and variations of the angle of incidence on the filter substrate using optical ray tracing. The response curves' cut-on and cut-off wavelengths - and their variation in the field of view - are determined with 0.8 nm accuracy, essential for the photometric redshift accuracy required by Euclid. After computing the photometric zeropoints in the AB mag system, we present linear transformations from and to common ground-based near-infrared photometric systems, for normal stars, red and brown dwarfs, and galaxies separately. A Python tool to compute accurate magnitudes for arbitrary passbands and spectral energy distributions is provided. We discuss various factors from space weathering to material outgassing that may slowly alter Euclid's spectral response. At the absolute flux scale, the Euclid in-flight calibration program connects the NISP photometric system to Hubble Space Telescope spectrophotometric white dwarf standards; at the relative flux scale, the chromatic evolution of the response is tracked at the milli-mag level. In this way, we establish an accurate photometric system that is fully controlled throughout Euclid's lifetime.Comment: 33 pages, 25 figures, accepted for publication in A&

    Euclid preparation. TBD. Forecast impact of super-sample covariance on 3x2pt analysis with Euclid

    Full text link
    Deviations from Gaussianity in the distribution of the fields probed by large-scale structure surveys generate additional terms in the data covariance matrix, increasing the uncertainties in the measurement of the cosmological parameters. Super-sample covariance (SSC) is among the largest of these non-Gaussian contributions, with the potential to significantly degrade constraints on some of the parameters of the cosmological model under study -- especially for weak lensing cosmic shear. We compute and validate the impact of SSC on the forecast uncertainties on the cosmological parameters for the Euclid photometric survey, obtained with a Fisher matrix analysis, both considering the Gaussian covariance alone and adding the SSC term -- computed through the public code PySSC. The photometric probes are considered in isolation and combined in the `3×\times2pt' analysis. We find the SSC impact to be non-negligible -- halving the Figure of Merit of the dark energy parameters (w0w_0, waw_a) in the 3×\times2pt case and substantially increasing the uncertainties on Ωm,0,w0\Omega_{{\rm m},0}, w_0, and σ8\sigma_8 for cosmic shear; photometric galaxy clustering, on the other hand, is less affected due to the lower probe response. The relative impact of SSC does not show significant changes under variations of the redshift binning scheme, while it is smaller for weak lensing when marginalising over the multiplicative shear bias nuisance parameters, which also leads to poorer constraints on the cosmological parameters. Finally, we explore how the use of prior information on the shear and galaxy bias changes the SSC impact. Improving shear bias priors does not have a significant impact, while galaxy bias must be calibrated to sub-percent level to increase the Figure of Merit by the large amount needed to achieve the value when SSC is not included.Comment: 22 pages, 13 figure

    Euclid Preparation. XXVIII. Forecasts for ten different higher-order weak lensing statistics

    Full text link
    Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of EuclidEuclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm\Omega_{\rm m}, σ8\sigma_8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.54.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with EuclidEuclid. The data used in this analysis are publicly released with the paper.Comment: 33 pages, 24 figures, main results in Fig. 19 & Table 5, version published in A&

    Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

    Full text link
    Cosmological surveys planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, in order not to introduce biases in the estimation of cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as it has been previously shown in literature studies. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by arXiv:1902.07226, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey, in order to assess their impact and quantify the bias on the measurement of cosmological parameters that neglecting such an effect would cause. We perform this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as expected to be obtained from the Euclid survey. We then use a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from such simulated observations. We find that neglecting the linear RSD leads to significant biases both when using galaxy correlations alone and when these are combined with cosmic shear, in the so-called 3×\times2pt approach. Such biases can be as large as 5 σ5\,\sigma-equivalent when assuming an underlying Λ\LambdaCDM cosmology. When extending the cosmological model to include the equation-of-state parameters of dark energy, we find that the extension parameters can be shifted by more than 1 σ1\,\sigma.Comment: 15 pages, 5 figures. To be submitted in A&

    Euclid preparation: XXII. Selection of Quiescent Galaxies from Mock Photometry using Machine Learning

    Full text link
    The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15,000 sq deg of the sky. Euclid is expected to detect ~12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. To optimally exploit the expected very large data set, there is the need to develop appropriate methods and software. Here we present a novel machine-learning based methodology for selection of quiescent galaxies using broad-band Euclid I_E, Y_E, J_E, H_E photometry, in combination with multiwavelength photometry from other surveys. The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods separately. The pipeline has `sparsity-awareness', so that missing photometry values are still informative for the classification. Our pipeline derives photometric redshifts for galaxies selected as quiescent, aided by the `pseudo-labelling' semi-supervised method. After application of the outlier filter, our pipeline achieves a normalized mean absolute deviation of ~< 0.03 and a fraction of catastrophic outliers of ~< 0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey with ancillary ugriz, WISE, and radio data; (ii) Euclid Wide Survey with ancillary ugriz, WISE, and radio data; (iii) Euclid Wide Survey only. Our classification pipeline outperforms UVJ selection, in addition to the Euclid I_E-Y_E, J_E-H_E and u-I_E,I_E-J_E colour-colour methods, with improvements in completeness and the F1-score of up to a factor of 2. (Abridged)Comment: 37 pages (including appendices), 26 figures; accepted for publication in Astronomy & Astrophysic

    Euclid preparation. XXIX. Water ice in spacecraft part I: The physics of ice formation and contamination

    Get PDF
    Molecular contamination is a well-known problem in space flight. Water is the most common contaminant and alters numerous properties of a cryogenic optical system. Too much ice means that Euclid's calibration requirements and science goals cannot be met. Euclid must then be thermally decontaminated, a long and risky process. We need to understand how iced optics affect the data and when a decontamination is required. This is essential to build adequate calibration and survey plans, yet a comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records, and we review the formation of thin ice films. A mix of amorphous and crystalline ices is expected for Euclid. Their surface topography depends on the competing energetic needs of the substrate-water and the water-water interfaces, and is hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images. Industrial tools exist to estimate contamination, and we must understand their uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of these tools. We developed a water transport model to compute contamination rates in Euclid, and find general agreement with industry estimates. Tests of the Euclid flight hardware in space simulators did not pick up contamination signals; our in-flight calibrations observations will be much more sensitive. We must understand the link between the amount of ice on the optics and its effect on Euclid's data. Little research is available about this link, possibly because other spacecraft can decontaminate easily, quenching the need for a deeper understanding. In our second paper we quantify the various effects of iced optics on spectrophotometric data.Comment: 35 pages, 22 figures, A&A in press. Changes to previous version: language edits, added Z. Bolag as author in the arxiv PDF (was listed in the ASCII author list and in the journal PDF, but not in the arxiv PDF). This version is identical to the journal versio

    Euclid preparation: XXVI. the Euclid Morphology Challenge: Towards structural parameters for billions of galaxies

    Get PDF
    The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline of the Organisational Unit MER of the Euclid Science Ground Segment, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper focusses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes, DeepLeGATo, Galapagos-2, Morfometryka, ProFit and SourceXtractor++, on a sample of about 1.5 million simulated galaxies (350 000 above 5σ) resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic SĂ©rsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (< 10% scatter on ideal SĂ©rsic simulations) down to an apparent magnitude of about IE = 23 in one component and IE = 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5, respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the official Euclid Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters

    Euclid preparation. XXV. The Euclid Morphology Challenge -- Towards model-fitting photometry for billions of galaxies

    Full text link
    The ESA Euclid mission will provide high-quality imaging for about 1.5 billion galaxies. A software pipeline to automatically process and analyse such a huge amount of data in real time is being developed by the Science Ground Segment of the Euclid Consortium; this pipeline will include a model-fitting algorithm, which will provide photometric and morphological estimates of paramount importance for the core science goals of the mission and for legacy science. The Euclid Morphology Challenge is a comparative investigation of the performance of five model-fitting software packages on simulated Euclid data, aimed at providing the baseline to identify the best suited algorithm to be implemented in the pipeline. In this paper we describe the simulated data set, and we discuss the photometry results. A companion paper (Euclid Collaboration: Bretonni\`ere et al. 2022) is focused on the structural and morphological estimates. We created mock Euclid images simulating five fields of view of 0.48 deg2 each in the IEI_E band of the VIS instrument, each with three realisations of galaxy profiles (single and double S\'ersic, and 'realistic' profiles obtained with a neural network); for one of the fields in the double S\'ersic realisation, we also simulated images for the three near-infrared YEY_E, JEJ_E and HEH_E bands of the NISP-P instrument, and five Rubin/LSST optical complementary bands (uu, gg, rr, ii, and zz). To analyse the results we created diagnostic plots and defined ad-hoc metrics. Five model-fitting software packages (DeepLeGATo, Galapagos-2, Morfometryka, ProFit, and SourceXtractor++) were compared, all typically providing good results. (cut)Comment: 29 pages, 33 figures. Euclid pre-launch key paper. Companion paper: Bretonniere et al. 202
    • 

    corecore