87 research outputs found

    Self-phase modulation effects and pulse propagation in gain-guided fibers

    Get PDF
    We present a theoretical analysis of pulse propagation and self-focusing in a gain-guided (GG) fiber amplifier. A weak pulse is launched in the GG fiber when the input pulse reaches a critical power the pulse begins to collapse in the transverse direction. By using different input powers the transmission characteristics are changed. We add coupling to a single-mode fiber at the output end and study pulse dispersion and energy

    An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser

    Get PDF
    By propagating beamlets from a periodically placed array of single-mode fiber amplifiers in a large mode-are (LMA) fiber, we find that a self-image of the initial beamlets is formed at certain distances in the LMA fiber. A Talbot mirror fiber device (TMFD) based on this property is proposed for phase-locking of a multi-fiber laser. For this laser system, we investigate how the LMA fiber length variation; the fiber amplifier phase variation, amplitude variation, and displacement affect the self-image qualities and the coupling efficiency

    What drives amyloid molecules to assemble into oligomers and fibrils?

    Get PDF
    We develop a general theory for three states of equilibrium of amyloid peptides: the monomer, oligomer, and fibril. We assume that the oligomeric state is a disordered micelle-like collection of a few peptide chains held together loosely by hydrophobic interactions into a spherical hydrophobic core. We assume that fibrillar amyloid chains are aligned and further stabilized by `steric zipper' interactions -- hydrogen bonding and steric packing, in addition to specific hydrophobic sidechain contacts. The model makes a broad set of predictions, consistent with experiments: (i) Similar to surfactant micellization, amyloid oligomerization should increase with bulk peptide concentration. (ii) The onset of fibrillization limits the concentration of oligomers in the solution. (iii) The average fibril length \emph{vs.} monomer concentration agrees with data on α\alpha-synuclein, (iv) Full fibril length distributions follow those of α\alpha-synuclein, (v) Denaturants should `melt out' fibrils, and (vi) Added salt should stabilize fibrils by reducing repulsions between amyloid peptide chains. Interestingly, small changes in solvent conditions can: (a) tip the equilibrium balance between oligomer and fibril, and (b) cause large changes in rates, through effects on the transition-state barrier. This model may provide useful insights into the physical processes underlying amyloid diseases

    Distance to testing sites and its association with timing of HIV diagnosis *

    Get PDF
    Early HIV diagnosis enables prompt treatment initiation, thereby contributing to decreased morbidity, mortality, and transmission. We aimed to describe the association between distance from residence to testing sites and HIV disease stage at diagnosis. Using HIV surveillance data, we identified all new HIV diagnoses made at publicly-funded testing sites in central North Carolina during 2005-2013. Early-stage HIV was defined as acute HIV (antibody-negative test with a positive HIV RNA) or recent HIV (normalized optical density <0.8 on the BED assay for non-AIDS cases); remaining diagnoses were considered post-early-stage HIV. Street distance between residence at diagnosis and 1) the closest testing site and 2) the diagnosis site was dichotomized at 5 miles. We fit log-binomial models using generalized estimating equations to estimate prevalence ratios (PR) and robust 95% CI for post-early-stage diagnoses by distance. Models were adjusted for race/ethnicity and testing period. Most of the 3028 new diagnoses were black (N=2144; 70.8%), men who have sex with men (N=1685; 55.7%), and post-early-stage HIV diagnoses (N=2010; 66.4%). Overall, 1145 (37.8%) cases traveled <5 miles for a diagnosis. Among cases traveling ≥5 miles for a diagnosis, 1273 (67.6%) lived <5 miles from a different site. Residing ≥5 miles from a testing site was not associated with post-early-stage HIV (adjusted PR, 95% CI: 0.98, 0.92-1.04), but traveling ≥5 miles for a diagnosis was associated with higher post-early HIV prevalence (1.07, 1.02-1.13). Most of the elevated prevalence observed in cases traveling ≥5 miles for a diagnosis occurred among those living <5 miles from a different site (1.09, 1.03-1.16). Modest increases in post-early-stage HIV diagnosis were apparent among persons living near a site, but choosing to travel longer distances to test. Understanding reasons for increased travel distances could improve accessibility and acceptability of HIV services and increase early diagnosis rates

    SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants

    Get PDF
    Single nucleotide variants (SNVs) are, together with copy number variation, the primary source of variation in the human genome and are associated with phenotypic variation such as altered response to drug treatment and susceptibility to disease. Linking structural effects of non-synonymous SNVs to functional outcomes is a major issue in structural bioinformatics. The SNPeffect database (http://snpeffect.switchlab.org) uses sequence- and structure-based bioinformatics tools to predict the effect of protein-coding SNVs on the structural phenotype of proteins. It integrates aggregation prediction (TANGO), amyloid prediction (WALTZ), chaperone-binding prediction (LIMBO) and protein stability analysis (FoldX) for structural phenotyping. Additionally, SNPeffect holds information on affected catalytic sites and a number of post-translational modifications. The database contains all known human protein variants from UniProt, but users can now also submit custom protein variants for a SNPeffect analysis, including automated structure modeling. The new meta-analysis application allows plotting correlations between phenotypic features for a user-selected set of variants

    Efficacy of nonsurgical interventions for anterior knee pain: Systematic review and meta-analysis of randomized trials

    Get PDF
    Anterior knee pain is a chronic condition that presents frequently to sports medicine clinics, and can have a long-term impact on participation in physical activity. Conceivably, effective early management may prevent chronicity and facilitate physical activity. Although a variety of nonsurgical interventions have been advocated, previous systematic reviews have consistently been unable to reach conclusions to support their use. Considering a decade has lapsed since publication of the most recent data in these reviews, it is timely to provide an updated synthesis of the literature to assist sports medicine practitioners in making informed, evidence-based decisions. A systematic review and meta-analysis was conducted to evaluate the evidence for nonsurgical interventions for anterior knee pain

    Sensing and Integration of Erk and PI3K Signals by Myc

    Get PDF
    The transcription factor Myc plays a central role in regulating cell-fate decisions, including proliferation, growth, and apoptosis. To maintain a normal cell physiology, it is critical that the control of Myc dynamics is precisely orchestrated. Recent studies suggest that such control of Myc can be achieved at the post-translational level via protein stability modulation. Myc is regulated by two Ras effector pathways: the extracellular signal-regulated kinase (Erk) and phosphatidylinositol 3-kinase (PI3K) pathways. To gain quantitative insight into Myc dynamics, we have developed a mathematical model to analyze post-translational regulation of Myc via sequential phosphorylation by Erk and PI3K. Our results suggest that Myc integrates Erk and PI3K signals to result in various cellular responses by differential stability control of Myc protein isoforms. Such signal integration confers a flexible dynamic range for the system output, governed by stability change. In addition, signal integration may require saturation of the input signals, leading to sensitive signal integration to the temporal features of the input signals, insensitive response to their amplitudes, and resistance to input fluctuations. We further propose that these characteristics of the protein stability control module in Myc may be commonly utilized in various cell types and classes of proteins

    An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins

    Get PDF
    We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data, structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological ageing, will primarily affect the aggregation of short-living proteins

    Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors

    Get PDF
    Patellofemoral Pain Syndrome (PFPS), a common cause of anterior knee pain, is successfully treated in over 2/3 of patients through rehabilitation protocols designed to reduce pain and return function to the individual. Applying preventive medicine strategies, the majority of cases of PFPS may be avoided if a pre-diagnosis can be made by clinician or certified athletic trainer testing the current researched potential risk factors during a Preparticipation Screening Evaluation (PPSE). We provide a detailed and comprehensive review of the soft tissue, arterial system, and innervation to the patellofemoral joint in order to supply the clinician with the knowledge required to assess the anatomy and make recommendations to patients identified as potentially at risk. The purpose of this article is to review knee anatomy and the literature regarding potential risk factors associated with patellofemoral pain syndrome and prehabilitation strategies. A comprehensive review of knee anatomy will present the relationships of arterial collateralization, innervations, and soft tissue alignment to the possible multifactoral mechanism involved in PFPS, while attempting to advocate future use of different treatments aimed at non-soft tissue causes of PFPS
    corecore