20 research outputs found

    Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry

    Get PDF
    Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states

    Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models

    Get PDF
    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics

    Hepcidin-25 in Chronic Hemodialysis Patients Is Related to Residual Kidney Function and Not to Treatment with Erythropoiesis Stimulating Agents

    Get PDF
    Hepcidin-25, the bioactive form of hepcidin, is a key regulator of iron homeostasis as it induces internalization and degradation of ferroportin, a cellular iron exporter on enterocytes, macrophages and hepatocytes. Hepcidin levels are increased in chronic hemodialysis (HD) patients, but as of yet, limited information on factors associated with hepcidin-25 in these patients is available. In the current cross-sectional study, potential patient-, laboratory- and treatment-related determinants of serum hepcidin-20 and -25, were assessed in a large cohort of stable, prevalent HD patients. Baseline data from 405 patients (62% male; age 63.7Β±13.9 [mean SD]) enrolled in the CONvective TRAnsport STudy (CONTRAST; NCT00205556) were studied. Predialysis hepcidin concentrations were measured centrally with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Patient-, laboratory- and treatment related characteristics were entered in a backward multivariable linear regression model. Hepcidin-25 levels were independently and positively associated with ferritin (p<0.001), hsCRP (p<0.001) and the presence of diabetes (p = 0.02) and inversely with the estimated glomerular filtration rate (p = 0.01), absolute reticulocyte count (p = 0.02) and soluble transferrin receptor (p<0.001). Men had lower hepcidin-25 levels as compared to women (p = 0.03). Hepcidin-25 was not associated with the maintenance dose of erythropoiesis stimulating agents (ESA) or iron therapy. In conclusion, in the currently studied cohort of chronic HD patients, hepcidin-25 was a marker for iron stores and erythropoiesis and was associated with inflammation. Furthermore, hepcidin-25 levels were influenced by residual kidney function. Hepcidin-25 did not reflect ESA or iron dose in chronic stable HD patients on maintenance therapy. These results suggest that hepcidin is involved in the pathophysiological pathway of renal anemia and iron availability in these patients, but challenges its function as a clinical parameter for ESA resistance

    An insight into the relationships between hepcidin, anemia, infections and inflammatory cytokines in pediatric refugees: a cross-sectional study

    Get PDF
    Contains fulltext : 69769.pdf (publisher's version ) (Open Access)BACKGROUND: Hepcidin, a key regulator of iron homeostasis, is increased in response to inflammation and some infections, but the in vivo role of hepcidin, particularly in children with iron deficiency anemia (IDA) is unclear. We investigated the relationships between hepcidin, cytokines and iron status in a pediatric population with a high prevalence of both anemia and co-morbid infections. METHODOLOGY/PRINCIPAL FINDINGS: African refugee children <16 years were consecutively recruited at the initial post-resettlement health check with 181 children meeting inclusion criteria. Data on hematological parameters, cytokine levels and co-morbid infections (Helicobacter pylori, helminth and malaria) were obtained and urinary hepcidin assays performed. The primary outcome measure was urinary hepcidin levels in children with and without iron deficiency (ID) and/or ID anaemia (IDA). The secondary outcome measures included were the relationship between co-morbid infections and (i) ID and IDA, (ii) urinary hepcidin levels and (iii) cytokine levels. IDA was present in 25/181 (13.8%). Children with IDA had significantly lower hepcidin levels (IDA median hepcidin 0.14 nmol/mmol Cr (interquartile range 0.05-0.061) versus non-IDA 2.96 nmol/mmol Cr, (IQR 0.95-6.72), p<0.001). Hemoglobin, log-ferritin, iron, mean cell volume (MCV) and transferrin saturation were positively associated with log-hepcidin levels (log-ferritin beta coefficient (beta): 1.30, 95% CI 1.02 to 1.57) and transferrin was inversely associated (beta: -0.12, 95% CI -0.15 to -0.08). Cytokine levels (including IL-6) and co-morbid infections were not associated with IDA or hepcidin levels. CONCLUSIONS/SIGNIFICANCE: This is the largest pediatric study of the in vivo associations between hepcidin, iron status and cytokines. Gastro-intestinal infections (H. pylori and helminths) did not elevate urinary hepcidin or IL-6 levels in refugee children, nor were they associated with IDA. Longitudinal and mechanistic studies of IDA will further elucidate the role of hepcidin in paediatric iron regulation

    SELDI-TOF MS profiles obtained in the different experiments.

    No full text
    <p>SELDI-TOF MS profiles of (A) hepidin-24 spiked urine sample showing next to the expected hepcidin forms also methionine oxidized (Ox) forms of Hepc24 and Hepc25; (B and C) different patient sera and urines, respectively, spiked with Hepc24 (5 nM into urines and 10 nM into sera). Note, the influence of the serum and urine matrices on the peak height of the Hepc24 spiked to patient samples; (D and E), blank serum and urine samples spiked with both Hepc24 and Hepc25 (7.5 nM of both hepcidin forms into urine and 10 nM into serum). Note that the method appears to be more sensitive for Hepc25 than for Hepc24, with an average peak intensity ratio Hepc24/Hepc25 of 0.693. This is probably due to the absence of a negatively charged aspartic acid residue in Hepc24, which negatively affects its binding on the IMAC-Cu<sup>2+</sup> protein chip surface. The hepcidin isoforms Hepc20, Hepc22 (only in urine), Hepc24 (synthetic analogue) and Hepc25 are indicated by arrows.</p

    Correlation of serum hepcidin levels with iron indices in controls with rigorously defined normal iron status.

    No full text
    <p>Data are correlation coefficients by Pearson correlation. STfR, soluble transferrin receptor; TS, transferrin saturation. Hepcidin and ferritin values were log transformed prior to correlation analysis <sup>*</sup>:P<0.05; <sup>**</sup>: P<0.01.</p

    Correlation between serum hepcidin and ferritin.

    No full text
    <p>Serum hepcidin levels in 23 healthy volunteers (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002706#pone-0002706-t002" target="_blank">Table 2</a>), as determined by our updated MS method, were correlated with their ferritin levels. Values were log transformed prior to correlation analysis. Pearson correlation: 0.6804 (pβ€Š=β€Š0.0004).</p

    Effect of the use of an internal standard on the hepcidin-25 concentrations in urine and serum of selected clinical populations.

    No full text
    <p>Hepc25 concentrations were calculated in nM based on the known concentration of spiked hepc24 in serum (A) and urine (B) samples. For serum, hepc24 intensities were corrected for the background intensity of unspiked samples (hepc24-bl). Note that for both urine and serum specimens the LLOD depends on the individual sample matrix and therefore varies between samples. The LLOD was determined in the 25 human serum and urine samples by using the background intensities at m/z 2400, 2515, 2846 for serum and at m/z 2299, 2510, 2910, for urine samples, respectively. The detection limit was defined as the mean+2 SD of these measurements and found be 2.0 peak intensity for serum and 1.76 peak intensity for urine. The lower level of detection (LLOD) in nM of each individual sample was determined by incorporating the sample specific hepc24 peak intensity value and these mean LLOD values in peak int for hepc25 peak at 2789 m/z in the formulas 1 and 2 for urine and serum (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002706#s4" target="_blank">Material and Methods</a> section). Ctrl, control; LPS, volunteers injected with polysaccharide (6 h after injection); IDA, iron deficiency anemia; TM, thalassemia major in various stages of disease; HH, C282Y homozygous hereditary hemochromatosis patients of various stages of disease; β—Š, hepcidin concentration; Π–, sample specific LLOD, the hepcidin concentration of the sample is then</p
    corecore