38 research outputs found

    The formation of a camalexin-biosynthetic metabolon

    Get PDF
    Arabidopsis thaliana efficiently synthesizes the antifungal phytoalexin camalexin without apparent release of bioactive intermediates, such as indole-3-acetaldoxime, suggesting channeling of the biosynthetic pathway by formation of an enzyme complex. To identify such protein interactions, two independent untargeted co49 immunoprecipitation (co-IP) approaches with the biosynthetic enzymes CYP71B1 and CYP71A13 as baits were performed and the camalexin biosynthetic P450 enzymes were shown to co-purify. These interactions were confirmed by targeted co-IP and Förster resonance energy transfer measurements based on fluorescence lifetime microscopy (FRET-FLIM). Furthermore, interaction of CYP71A13 and Arabidopsis P450 Reductase 1 (ATR1) was observed. An increased substrate affinity of CYP79B2 in presence of CYP71A13 was shown, indicating allosteric interaction. Camalexin biosynthesis involves glutathionylation of an intermediary indole-3-cyanohydrin, synthesized by CYP71A12 and especially CYP71A13. It was demonstrated by FRET-FLIM and co-IP, that the glutathione transferase GSTU4, which is co-expressed with tryptophan- and camalexin-specific enzymes, was physically recruited to the complex. Surprisingly, camalexin concentrations were elevated in knock-out and reduced in GSTU4 overexpressing plants. This shows that GSTU4 is not directly involved in camalexin biosynthesis but rather has a role in a competing mechanism

    Protein kinase SnRK2. 4 is a key regulator of aquaporins and root hydraulics in Arabidopsis

    Get PDF
    Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s

    Moonlighting Function of Phytochelatin Synthase1 in Extracellular Defense against Fungal Pathogens

    Get PDF
    13 Pág.Phytochelatin synthase (PCS) is a key component of heavy metal detoxification in plants. PCS catalyzes both the synthesis of the peptide phytochelatin from glutathione and the degradation of glutathione conjugates via peptidase activity. Here, we describe a role for PCS in disease resistance against plant pathogenic fungi. The pen4 mutant, which is allelic to cadmium insensitive1 (cad1/pcs1) mutants, was recovered from a screen for Arabidopsis mutants with reduced resistance to the nonadapted barley fungal pathogen Blumeria graminis f. sp. hordei PCS1, which is found in the cytoplasm of cells of healthy plants, translocates upon pathogen attack and colocalizes with the PEN2 myrosinase on the surface of immobilized mitochondria. pcs1 and pen2 mutant plants exhibit similar metabolic defects in the accumulation of pathogen-inducible indole glucosinolate-derived compounds, suggesting that PEN2 and PCS1 act in the same metabolic pathway. The function of PCS1 in this pathway is independent of phytochelatin synthesis and deglycination of glutathione conjugates, as catalytic-site mutants of PCS1 are still functional in indole glucosinolate metabolism. In uncovering a peptidase-independent function for PCS1, we reveal this enzyme to be a moonlighting protein important for plant responses to both biotic and abiotic stresses.This work was supported by the National Science Foundation and the Carnegie Institution for Science (S.S.), Stanford University (Graduate Fellowship to M.S.), the Max Planck Society (P.S.L.), the Deutsche Forschungsgemeinschaft (DFG; grants SPP1212 to P.S.L., GR 938 to E.G., and LI 1317/2-1 to V.L.), the Spanish Ministry of Economy and Competitiveness (MINECO; grants BIO2015-64077-R and BIO2012-32910 to A.M.), and the Polish National Science Centre (grant 2012/07/E/NZ2/04098 to P.B.).Peer reviewe

    Extensive signal integration by the phytohormone protein network

    Get PDF
    Plant hormones coordinate responses to environmental cues with developmental programs1, and are fundamental for stress resilience and agronomic yield2. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways3. However, fundamental questions remain about how information from different pathways is integrated. Genetically, most phenotypes seem to be regulated by several hormones, but transcriptional profiling suggests that hormones trigger largely exclusive transcriptional programs4. We hypothesized that protein–protein interactions have an important role in phytohormone signal integration. Here, we experimentally generated a systems-level map of the Arabidopsis phytohormone signalling network, consisting of more than 2,000 binary protein–protein interactions. In the highly interconnected network, we identify pathway communities and hundreds of previously unknown pathway contacts that represent potential points of crosstalk. Functional validation of candidates in seven hormone pathways reveals new functions for 74% of tested proteins in 84% of candidate interactions, and indicates that a large majority of signalling proteins function pleiotropically in several pathways. Moreover, we identify several hundred largely small-molecule-dependent interactions of hormone receptors. Comparison with previous reports suggests that noncanonical and nontranscription-mediated receptor signalling is more common than hitherto appreciated

    Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis

    No full text
    ABI1, a protein phosphatase 2C, is a key component of signal transduction in Arabidopsis. It regulates diverse responses to the phytohormone abscisic acid (ABA) such as stomatal closure, seed dormancy and inhibition of vegetative growth. By analysing proteins capable of interacting with ABI1, we have identified the homeodomain protein ATHB6 as a regulator of the ABA signal pathway. Critical for interaction between ATHB6 and ABI1 is an intact protein phosphatase domain and the N-terminal domain of ATHB6 containing the DNA-binding site. ATHB6 recognizes a cis-element present in its promoter, which encompasses the core motif (CAATTATTA) that mediated ATHB6- and ABA-dependent gene expression in protoplasts. In addition, transgenic plants containing a luciferase gene controlled by the ATHB6 promoter documented a strong ABA-inducible expression of the reporter which was abrogated in the ABA-insensitive abi1 mutant. Arabidopsis plants with constitutive expression of the transcriptional regulator revealed ABA insensitivity in a subset of ABI1-dependent responses. Thus, the homeodomain protein ATHB6 seems to represent a negative regulator of the ABA signal pathway and to act downstream of ABI1
    corecore