
 

 

The formation of a camalexin-biosynthetic metabolon 1 

 2 

Stefanie Muchaa,b, Stephanie Heinzlmeirc, Verena Kriechbaumerd, Benjamin 3 

Stricklanda, Charlotte Kirchhelleb, 2, Manisha Choudharyb, Natalie Kowalskia, Ruth 4 

Eichmanne, 3, Ralph Hückelhovene, Erwin Grilla, Bernhard Küsterc, Erich 5 

Glawischniga, b, f, 1  6 

a Chair of Botany, Department of Plant Sciences, Technical University of Munich, 7 

Emil-Ramann-Str. 4, 85354 Freising, Germany. 8 
b Chair of Genetics, Department of Plant Sciences, Technical University of Munich, 9 

Emil-Ramann-Str. 8, 85354 Freising, Germany. 10 
c Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-11 

Erlenmeyer-Forum 5, 85354 Freising, Germany. 12 
d Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, 13 

Oxford, OX3 0BP, UK. 14 
e Chair of Phytopathology, Department of Plant Sciences, Technical University of 15 

Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany. 16 
f Microbial Biotechnology, TUM Campus Straubing for Biotechnology and 17 

Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, 18 

Germany (present address). 19 

1 corresponding author, Email: Glawischnig@tum.de. 20 
2 present address: Department of Plant Sciences, University of Oxford, South Parks 21 

Road, Oxford OX1 3RB, UK 22 

3 present address: School of Life Sciences, University of Warwick, Gibbet Hill 23 

Campus, Coventry, CV4 7AL, UK 24 

ORCID IDs: 0000-0002-6382-7035 (S.M.); 0000-0002-1066-6565 (S.H.); 0000-0003-25 

3782-5834 (V.K.); 0000-0002-1387-9013 (B.S.); 0000-0001-8448-6906 (C.K.); 0000-26 

0001-8158-1318 (M.C.); 0000-0002-9464-6456 (N.K.); 0000-0002-9307-7773 (R.E.); 27 

0000-0001-5632-5451 (R. H.); 0000-0003-4036-766X (E. Gr.); 0000-0002-9094-1677 28 

(B.K.); 0000-0001-9280-5065 (E.Gl.) 29 

 30 

Short title: The camalexin-biosynthetic metabolon 31 

 32 

33 

mailto:Glawischnig@tum.de


 

 2 

One-sentence summary: In Arabidopsis thaliana, the cytochrome P450 enzymes of 34 

the camalexin biosynthetic pathway form a metabolic complex to which the 35 

glutathione transferase U4 is recruited. 36 
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 42 
Abstract 43 
 44 
Arabidopsis thaliana efficiently synthesizes the antifungal phytoalexin camalexin 45 

without apparent release of bioactive intermediates, such as indole-3-acetaldoxime, 46 

suggesting channeling of the biosynthetic pathway by formation of an enzyme 47 

complex. To identify such protein interactions, two independent untargeted co-48 

immunoprecipitation (co-IP) approaches with the biosynthetic enzymes CYP71B15 49 

and CYP71A13 as baits were performed and the camalexin biosynthetic P450 50 

enzymes were shown to co-purify. These interactions were confirmed by targeted co-51 

IP and Förster resonance energy transfer measurements based on fluorescence 52 

lifetime microscopy (FRET-FLIM). Furthermore, interaction of CYP71A13 and 53 

Arabidopsis P450 Reductase 1 (ATR1) was observed. An increased substrate affinity 54 

of CYP79B2 in presence of CYP71A13 was shown, indicating allosteric interaction. 55 

Camalexin biosynthesis involves glutathionylation of an intermediary indole-3-56 

cyanohydrin, synthesized by CYP71A12 and especially CYP71A13. It was 57 

demonstrated by FRET-FLIM and co-IP, that the glutathione transferase GSTU4, 58 

which is co-expressed with tryptophan- and camalexin-specific enzymes, was 59 

physically recruited to the complex. Surprisingly, camalexin concentrations were 60 

elevated in knock-out and reduced in GSTU4 overexpressing plants. This shows that 61 

GSTU4 is not directly involved in camalexin biosynthesis but rather has a role in a 62 

competing mechanism.  63 

 64 

Introduction 65 

Cytochrome P450 enzymes are found in all domains of life, but are particularly 66 

diversified in plants. In Arabidopsis thaliana, 244 P450-encoding genes are 67 

annotated, and individual enzymes have been shown to play roles e.g. in the 68 
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biosynthesis of phytohormones or of compounds involved in defense (Bak et al., 69 

2011). However, the biological function of the vast majority of Arabidopsis P450 70 

enzymes remains unclear. Typically, eukaryotic P450 enzymes are anchored to the 71 

membrane of the endoplasmic reticulum (ER) with their catalytic centers facing the 72 

cytosolic side. They are able to form homo- and heteromers (Reed and Backes, 73 

2012) and there is growing evidence that these interactions have an effect on the 74 

catalytic activities of the respective enzymes. This has been shown in detail for the 75 

human enzymes CYP2E1, CYP3A4, and CYP3A5 (Davydov et al., 2015). 76 

In contrast to human/animal systems, for plant P450 enzymes there is little 77 

information on potential functional interactions. For CYP73A5 and CYP98A3, 78 

physical interactions with each other and additional  enzymes of the phenylpropanoid 79 

biosynthetic pathway was demonstrated by co-purification and Förster resonance 80 

energy transfer (FRET) (Bassard et al., 2012). Also for sporopollenin biosynthesis, 81 

involving CYP703 and CYP704 isoforms, interactions with other pathway enzymes 82 

have been demonstrated by pulldown, yeast-2-hybrid and FRET experiments 83 

(Lallemand et al., 2013). Furthermore, there is evidence for complex formation of 84 

flavonoid biosynthetic enzymes (Crosby et al., 2011; Dastmalchi et al., 2016). 85 

Recently, it was shown in detail that the cyanogenic glucoside Dhurrin is synthesized 86 

by a protein complex of two cytochrome P450 enzymes, a P450 reductase and a 87 

glucosyl transferase (Laursen et al., 2016). These examples indicate formation of 88 

transient enzyme complexes, also referred to as metabolons, allowing efficient 89 

channeling of intermediates, in particular for the biosynthesis of secondary 90 

metabolites (Fujino et al., 2018; Hawes and Kriechbaumer, 2018; Knudsen et al., 91 

2018).  92 

In Arabidopsis, cytochrome P450 enzymes play a crucial role in the biosynthesis of 93 

indolic defense compounds, such as indole glucosinolates, camalexin, 4-94 

hydroxyindole-3-carbonyl nitrile, or derivatives of indole-3-carboxylic acid (Rauhut 95 

and Glawischnig, 2009; Sønderby et al., 2010; Böttcher et al., 2014; Rajniak et al., 96 

2015) (Fig. 1). For the biosynthesis of these specialized metabolites, tryptophan is 97 

converted to indole-3-acetaldoxime (IAOx) by CYP79B2 and CYP79B3. Cyp79b2 98 

cyp79b3 double mutants, in which tryptophan-derived defense compounds are 99 

essentially absent, have been shown to be significantly more susceptible to a variety 100 

of pathogens (Zhao et al., 2002; Glawischnig et al., 2004; Böttcher et al., 2009; 101 

Schlaeppi et al., 2010; Frerigmann et al., 2016). In healthy plants, IAOx is 102 
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predominantly oxidized by CYP83B1 (SUR2, RNT1) to the corresponding nitrile 103 

oxides or aci-nitro compound (Bak et al., 2001; Hansen et al., 2001), the precursors 104 

of indole glucosinolates. Pathogen infection or treatment with high dosages of UV 105 

light or heavy metals, such as silver nitrate, induce the production of CYP71A12 and 106 

CYP71A13, which in contrast dehydrate IAOx to indole-3-acetonitrile (IAN) in the 107 

biosynthesis of camalexin (Nafisi et al., 2007; Müller et al., 2015), which is the major 108 

metabolite synthesized in response to these stresses. In camalexin biosynthesis, IAN 109 

is then activated, presumably to indole cyanohydrin, which also involves CYP71A12 110 

and CY71A13, and conjugated with glutathione (Parisy et al., 2007) yielding GS-IAN. 111 

Glutathionylations are catalyzed by glutathione transferases (GSTs), which are found 112 

in all eukaryotes. Arabidopsis contains 54 GST genes belonging to 7 different classes 113 

(Krajewski et al., 2013). A number of GSTs have been shown to be capable of 114 

metabolizing xenobiotics (Dixon et al., 2002; Wagner et al., 2002), but with a few 115 

exceptions (Kitamura et al., 2004) the information on endogenous functions is limited, 116 

and it is unclear to which degree they are functionally redundant (Czerniawski and 117 

Bednarek, 2018). For GS-IAN formation, Su et al. (2011)  suggested an involvement 118 

of GSTF6, which is a member of a small subfamily together with GSTF2, GSTF3 and 119 

GSTF7. Interestingly, camalexin concentrations detected in response to silver nitrate 120 

were not significantly different with respect to wildtype even in gstf2 gstf3 gstf6 triple 121 

knockout mutants or a gstf2 gstf3 gstf6 gstf7 knockdown line (Rauhut, 2009). This 122 

shows that alternative GSTs might also participate in this step. Subsequently, GS-123 

IAN is shortened to Cys(IAN) involving gamma-glutamyl peptidase 1 (GGP1), and 124 

Cys(IAN) is then converted to camalexin by a unique bifunctional P450 enzyme, 125 

CYP71B15 (Fig. 1). Cyp71b15 mutants (phytoalexin deficient 3, pad3) are camalexin-126 

deficient and accumulate camalexin precursors, such as Cys(IAN), dihydrocamalexic 127 

acid (DHCA) and derivatives thereof (Glazebrook and Ausubel, 1994; Zhou et al., 128 

1999; Bednarek et al., 2005; Schuhegger et al., 2006; Böttcher et al., 2009). 129 

Despite camalexin being a major sink for tryptophan in response to various stresses, 130 

intermediates such as IAOx are not accumulating, suggesting possible metabolite 131 

channeling between interacting proteins. Therefore, we have hypothesized that 132 

camalexin is produced by a metabolon. In this work, we provide evidence that the 133 

cytochrome P450 enzymes of the camalexin biosynthetic pathway physically interact 134 

and we systematically analyzed the potential functions of GSTs in camalexin 135 

formation. 136 
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 137 

Results 138 

Cellular and subcellular localization of CYP71B15 139 

CYP71B15 was expressed as C-terminal GFP fusion protein under control of its own 140 

promoter. This construct was expressed in a pad3 knockout mutant background and 141 

lines complementing the camalexin-deficient phenotype were selected. Expression of 142 

the CYP71B15-GFP protein was monitored by Western blot analysis and a line was 143 

selected for further analysis in which a strong GFP signal was observed in response 144 

to Botrytis cinerea infection, while the signal was absent in untreated leaves 145 

(Supplemental Figure 1A). 146 

As a next step, we analyzed the cellular distribution and subcellular localization of 147 

CYP71B15-GFP in response to the fungal pathogens B. cinerea, Alternaria 148 

brassicicola, and Erysiphe cruciferarum (Fig. 2). In accordance with its biological 149 

function in phytoalexin biosynthesis, CYP71B15-GFP was only observed in cells in 150 

close proximity to successful pathogen infection. We observed a strong accumulation 151 

of CYP71B15-GFP around the site to B. cinerea infection (24 h after infection, hai) 152 

(Fig 2A-F), surrounding an area, where the necrotrophic fungus had apparently 153 

already started to macerate the leaf tissue and where no CYP71B15-GFP was 154 

detected, possibly because these cells were no longer metabolically active. For 155 

necrotrophic A. brassicicola (18 hai), CYP71B15-GFP expression, was only observed 156 

in cells in direct cellular contact with the fungus (Fig. 2G-L). In E. cruciferarum 157 

infected leaves (24 hai), highest CYP71B15-GFP abundance was observed in cells 158 

next to cells that had been attacked or penetrated by the biotrophic fungus (Fig. 2 M-159 

R). Note that E. cruciferarum spores, which were not germinated, did not induce 160 

CYP71B15-GFP expression (Fig 2M-O). In all cases, CYP71B15-GFP was located in 161 

the ER, which also surrounds the nucleus. This is in accordance with the detected 162 

ER-localization in the heterologous Nicotiana system (see below). No focal protein 163 

accumulations at sites of plant-microbe interactions were detected. 164 

  165 

Untargeted screen for interaction partners of CYP71B15 166 

Applying this CYP71B15pro:CYP71B15-GFP (pad3) line, an untargeted proteomics 167 

screen was set up to identify proteins which interact with CYP71B15 in B. cinerea-168 
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infected, as model system for pathogen interactions, or in UV-irradiated plants. 169 

Rosette leaves of six weeks-old CYP71B15pro:CYP71B15-GFP (pad3) and pad3 170 

plants were infected with B. cinerea. After 24 h, microsomes were prepared and 171 

solubilized. Co-IPs were performed and the eluates were subjected to trypsin 172 

digestion and MS analysis. An aliquot of starting material was also analyzed to 173 

determine the composition of microsomal proteins in response to B. cinerea infection. 174 

Along with the bait protein CYP71B15, which was the protein corresponding to the 175 

highest signal intensity, a total of 71 proteins significantly accumulated with respect to 176 

the control IPs. Strikingly, among these, 22 cytochrome P450 enzymes, e.g. 177 

CYP71B23, CYP84A1, and CYP706A1, were highly overrepresented (Fig. 3; 178 

Supplemental Figure 2A). CYP71A13, the enzyme channeling IAOx into the 179 

camalexin biosynthetic pathway, was among the interacting proteins which 180 

accumulated with highest intensity (average log2 intensity = 25.4) and highest 181 

specificity (109-fold enrichment, p=0.00014). Interestingly, the P450 enzyme 182 

CYP83B1 which competes with camalexin-specific enzymes for the intermediate 183 

IAOx (Fig. 1) (Bak et al., 2001; Hansen et al., 2001), and CYP71B6 which is involved 184 

in IAN metabolism (Bak et al., 2001; Hansen et al., 2001; Böttcher et al., 2014; Müller 185 

et al., 2019), were also enriched. CYP71A12 was also significantly enriched with an 186 

Label-free quantification (LFQ) intensity approx. 12-fold lower than CYP71A13. 187 

CYP79B2 and ATR1 were detected in the co-IP, but the respective enrichments (4.5-188 

fold, p=0.17 and 5.0-fold, p=0.022, respectively) were below the threshold of 189 

significance indicating weak or transient interaction with the observed CYP71B15-190 

containing protein complex. Interestingly, PDR12/ABCG40, which was recently 191 

identified as camalexin transporter (He et al., 2019) was significantly enriched (7.8-192 

fold; p=0.00029), indicating that biosynthesis and transport of camalexin to some 193 

extent might be physically linked. For a comprehensive overview of the proteomics 194 

data, see Supplemental Dataset 1.  195 

To evaluate to which extent this result depends on the trigger of camalexin 196 

biosynthesis, IPs were also performed with UV-irradiated leaves. The general 197 

outcome was similar (Supplemental Figure 2B): Besides the bait, which showed 198 

highest abundance, P450 enzymes such as CYP71A13, CYP83B1 and CYP71B6 199 

were highly enriched, but also CYP79B2 and CYP71A12 were co-purified with 200 

CYP71B15 (Supplemental Dataset 1).  201 

 202 
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Screen for inducible physical interactors of CYP71A13 203 

CYP71A13 was consistently identified as interactor in an untargeted screen with 204 

CYP71B15 as bait. As a complementary approach, a CYP71A13-YFP fusion protein 205 

was expressed in Arabidopsis under control of the 35S promoter. Microsomes of UV-206 

irradiated or untreated rosette leaves were isolated and solubilized, and a co-IP was 207 

performed to address (i) whether CYP71B15-CYP71A13 interaction is independent of 208 

the choice of baits, and (ii) which interaction partners specifically bind CYP71A13 in 209 

response to induction. A total of 875 proteins were reproducibly detected in the co-210 

IPs of the UV-treated samples (Supplemental Dataset 2), including 26 cytochrome 211 

P450 enzymes, and the cytochrome P450 reductases ATR1 and ATR2. Constitutive 212 

expression of the bait allows to detect also binding partners under control conditions, 213 

where concentrations of CYP71A13 expressed under control of its native promoter 214 

are too low for quantitative work. As this approach can yield also unspecific binding 215 

partners, the analysis was focused on the differences of UV treatment versus control. 216 

Strikingly, only one protein, CYP71B15, was significantly enriched in the UV-treated 217 

versus the non-treated sample (Fig. 4). Five proteins were significantly depleted in 218 

the UV-treated versus the non-treated sample, including Nitrilase 3 (NIT3, approx. 7-219 

fold), which has been suggested to convert IAN to the auxin indole-3-acetic acid 220 

(IAA) upon sulphur starvation (Kutz et al., 2002).  221 

In summary, we conclude from the untargeted co-IP experiments that the core 222 

camalexin biosynthetic enzymes CYP71B15 and CYP71A13 physically interact with 223 

each other in challenged Arabidopsis rosette leaves. Also, CYP71B6 which 224 

specifically converts IAN to Indole-3-aldehyde (ICHO) and Indole-3-carboxylic acid 225 

(ICOOH) (Böttcher et al., 2014) was consistently identified as a member of the 226 

protein complex. In the untargeted screens, CYP79B2 was identified as binding 227 

partner of CYP71B15, although the specificity of this interaction was not significant. 228 

No interaction in an untargeted screen with CYP71A13 was observed. This indicates 229 

that binding of CYP79B2 to the proposed camalexin biosynthetic protein complex is 230 

weaker and more transient than the interaction between the camalexin-specific 231 

enzymes CYP71A13 and CYP71B15.   232 

 233 

Physical interaction of camalexin biosynthetic enzymes is confirmed by 234 

targeted co-IP 235 
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In order to confirm the physical interaction of the camalexin biosynthetic enzymes 236 

CYP71A12, CYP71A13, CYP71B15 and ATR1, different combinations of these 237 

proteins were transiently expressed in Nicotiana benthamiana as C-terminally YFP- 238 

and FLAG-tagged proteins. Solubilized microsomes were applied to -GFP-beads 239 

and IP and co-IP was monitored by Western Blot with GFP- and FLAG-specific 240 

antibodies, respectively (Fig. 5; Supplemental Figure 3). As negative controls, all 241 

proteins were additionally co-expressed with membrane-bound GFP in order to 242 

exclude protein interaction due to the YFP tag or unspecific binding of the FLAG 243 

tagged proteins to the polysaccharide chains of the GFP trap beads used for targeted 244 

co-IP. Interaction was shown for CYP71A13 with CYP71B15 and ATR1. CYP71B15 245 

also interacts with CYP71A12. In addition, interaction of CYP71A13 and CYP71B15 246 

with the glutathione transferase (GST) U4 (see below) was observed.  247 

 248 

CLSM microscopy and FRET-FLIM analysis demonstrate physical interaction of 249 

biosynthetic enzymes in vivo 250 

The subcellular localization of CYP71A12, CYP71A13, CYP71B15 and CYP79B2, as 251 

well as of GGP1 and the GSTs U2 and U4 (Fig. 6), was analyzed by confocal 252 

microscopy, three days after transient expression of corresponding C-terminal GFP- 253 

and RFP-fusion proteins in N. benthamiana (Fig. 6, Supplemental Figure 4). 254 

CYP71A12 (Supplemental Fig. 4A), CYP71A13 (Supplemental Fig. 4B), and 255 

CYP71B15 (Supplemental Fig. 4C) were localized to the ER and showed co-256 

localization with the ER lumenal marker RFP-HDEL and with each other (Fig. 6 A-C, 257 

D-F). Interestingly, although all experimental conditions were chosen identical to the 258 

other P450 enzymes analyzed, CYP79B2-RFP expression was always weaker (Fig. 259 

6G). Nevertheless, co-localization with CYP71A13 was observed (Fig. 6 I). 260 

Apparently, GGP1 was localized to the cytosol and to some extent mis-localization of 261 

CYP71A13 to the cytoplasm was induced by GGP1 co-expression (Fig. 6 J-L). 262 

We analyzed physical interaction by FRET (Förster, 1948) measured by donor 263 

excited-state FLIM (Becker, 2012; Schoberer and Botchway, 2014). The reduction in 264 

the lifetime of the GFP (donor) fluorescence occurs only when an acceptor 265 

fluorophore (mRFP) is within a distance of 10 nm, indicating a very high proximity 266 

and most likely direct physical contact between the two proteins of interest. 267 

Fluorescence lifetime of CYP71A12-GFP (Fig. 7A), CYP71A13-GFP (Fig. 7B), and 268 
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CYP71B15-GFP (Fig. 7C) was quantified in combination with various potential 269 

binding partners. Interaction was shown for CYP71A12 with CYP71B15, CYP79B2, 270 

GSTU4 and the soluble camalexin-biosynthetic enzyme GGP1. CYP71A13 binds to 271 

CYP71A12, CYP71B15, CYP79B2, GSTU4, and GGP1. Furthermore, the 272 

fluorescence lifetime of CYP71B15-GFP in presence of CYP71A12, CYP79B2, 273 

GSTU4 or GGP1 was statistically significantly reduced, which indicates an interaction 274 

of also these enzymes.  275 

Taking the co-IP and FRET-FLIM data together, essentially it was demonstrated that 276 

the known camalexin biosynthetic enzymes form a protein complex in vivo. 277 

Interestingly, no CYP71A12 or CYP71B15 homodimer formation was observed. This 278 

also demonstrates that e.g. the observed interactions between CYP71A12/A13 and 279 

CYP71B15 are not due to unspecific dimerization of the cytochrome P450s. 280 

 281 

Enzymatic parameters of CYP79B2 indicate allosteric interaction with 282 

CYP71A13 283 

In order to examine potential metabolic channeling, the first two pathway enzymes, 284 

CYP79B2 and CYP71A13 were co-expressed together with ATR1 in Saccharomyces 285 

cerevisiae. As a control, the CYP71A13 expression construct was replaced by an 286 

empty vector. Tryptophan-conversion by corresponding microsomes was monitored. 287 

A striking shift of the product spectrum towards formation of IAN was observed for 288 

CYP79B2/CYP71A13, with respect to CYP79B2/empty vector microsomes (Fig. 8A). 289 

In addition, co-expression of CYP79B2 and CYP71A13 reduced the apparent Km-290 

value of CYP79B2 for tryptophan more than two-fold (6.9 ± 0.9 µM versus 17.5 ± 1.9 291 

µM) (Fig. 8B). 292 

 293 

GSTU4 physically interacts with CYP71A13 and is relevant for the camalexin 294 

response 295 

In camalexin biosynthesis, activated IAN, presumably indole cyanohydrin, is 296 

glutathionylated, probably involving a GST (Klein et al., 2013). The untargeted co-IP 297 

screens (Supplemental datasets 1 and 2) revealed only few GSTs as proteins co-298 

purified with very low signal intensity. GSTF6, previously proposed to be involved in 299 

camalexin biosynthesis (Su et al., 2011) was not detected. Possibly the interaction of 300 
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the cytosolic GSTs with the P450 enzymes is not sufficiently strong to persist in 301 

presence of the applied Triton X-100 concentration. To evaluate which Arabidopsis 302 

GSTs are capable of this conversion, a qualitative screening was performed in a 303 

yeast strain in which four endogenous GSTs and three genes of glutathione 304 

conjugate catabolism were deleted (GTO1, GTO2, GTO3, TEF4, CPC, CPY, CIS2) 305 

(Krajewski et al., 2013; Kowalski, 2016) and in which expression plasmids for ATR1 306 

and CYP71A13 were introduced. These yeast cells were transformed with each of 307 

the 54 Arabidopsis GSTs and after selection screened for biotransformation of IAN 308 

and glutathione yielding GS-IAN. When an empty vector was used instead of the 309 

CYP71A13 expression plasmid, no activity was detected. Also, when no Arabidopsis 310 

GST was expressed, no GS-IAN was synthesized. Strikingly, for 41 enzymes, 311 

including most of the phi- and tau-class GSTs, product formation was observed 312 

(Supplemental Figure 5). As an approach to identify which of the active GSTs is 313 

relevant in planta, transcriptomics data was surveyed for co-expression with 314 

camalexin biosynthetic genes. In particular, GSTU4 is strongly induced by pathogens 315 

and correlated with the genes of camalexin biosynthesis (CYP71B15, r=0.85; 316 

CYP71A13 r=0.77, expression angler, B. cinerea set (Toufighi et al., 2005), see also 317 

Supplemental Table 1). 318 

GSTU4 was co-expressed with CYP71A13 in N. benthamiana as RFP/GFP fusion 319 

proteins and their subcellular localization was monitored (Fig. 6; Supplemental Figure 320 

4, 6). As control, GSTU2 was included, which is closely related to GSTU4 and a 321 

member of the same gene cluster, and only weakly transcriptionally co-regulated with 322 

genes of camalexin biosynthesis (CYP71B15, r=0.53, CYP71A13, r=0.62, expression 323 

angler (Toufighi et al., 2005), B. cinerea set). Physical interaction was tested for both 324 

pairs by FRET-FLIM. For GSTU4-RFP a strong reduction of the CYP71A12-GFP, 325 

CYP71A13-GFP and CYP71B15-GFP lifetimes was detected (Fig. 7). All three 326 

CYP71s and GSTU2 did not physically interact (Fig. 7). Interaction of GSTU4 with 327 

CYP71A13 and CYP71B15 was also demonstrated via co-IP analysis (Fig. 5)  328 

To evaluate a potential function of GSTU2 and GSTU4 in camalexin biosynthesis, 329 

gstu2 and gstu4 knockout as well as GSTU4 overexpression lines were analyzed for 330 

camalexin formation in response to UV-C light (Supplemental Figure 7A), silver 331 

nitrate treatment (Supplemental Figure 7B) and B. cinerea infection (Supplemental 332 

Figure 7C). While for gstu2 no difference in camalexin levels relative to a wild-type 333 

control was observed, gstu4 knockout mutants typically showed elevated camalexin 334 
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concentrations. Strikingly, in response to B. cinerea infection, 35Spro:GSTU4 335 

overexpression lines accumulated less camalexin than wildtype plants. To statistically 336 

evaluate these effects, data from four independent experiments were combined (Fig. 337 

9). There is a significant negative effect of GSTU4 on the relative camalexin 338 

concentration accumulating in response to B. cinerea infection. 339 

 340 

Discussion 341 

The physical interaction of enzymes is a powerful strategy to effectively channel 342 

biosynthetic pathways and avoid release of reactive intermediates. Upon induction, 343 

camalexin is a major sink for tryptophan. Nevertheless, intermediates such as IAOx 344 

are not accumulating, indicating metabolite channeling. Camalexin biosynthesis 345 

involves several P450 enzymes which are bound to ER membranes. Membrane 346 

anchoring restricts diffusion facilitating that P450 enzymes can serve as nuclei for the 347 

formation of metabolic complexes. In addition, the ER membrane can reorganize 348 

bringing cytochrome P450 enzymes into contact with pathway enzymes in other 349 

organelles, which was e.g. observed for CYP81F2 in the interaction of Arabidopsis 350 

with nonadapted powdery mildew Blumeria graminis f. sp hordei (Bgh)(Fuchs et al., 351 

2016). For the ultimate enzyme of the camalexin biosynthetic pathway, CYP71B15 352 

(PAD3), in the interaction with B. cinerea, A. brassicicola, and E. cruciferarum (Fig. 2) 353 

we observed a strong induction of protein expression, but no focal accumulation. 354 

Highly localized expression at sites of interaction together with metabolic channeling 355 

in multienzyme complexes may ensure highly controlled and safe production of 356 

camalexin on demand. 357 

We identified proteins which physically interact with CYP71B15 (PAD3) following an 358 

untargeted co-IP approach (Fig. 3). The relative abundance of the co-purified 359 

proteins do not reflect the relative protein abundance of the corresponding solubilized 360 

microsomes, which served as starting material. Based on LFQ intensities, P450 361 

enzymes represent only a minor fraction of total microsomal proteins, whilst they are 362 

highly overrepresented in the co-IP samples and highly enriched with respect to 363 

control IPs. This shows that the interaction between CYP71B15 and other P450 364 

enzymes is not random. CYP71A12 and CYP71A13 were co-purified with high 365 

significance, demonstrating the specific interaction of camalexin biosynthetic 366 
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enzymes. In addition, enzymes involved in other pathways, such as phenylpropanoid 367 

or glucosinolate metabolism, were also significantly enriched, including CYP71B6, 368 

which degrades IAN to ICOOH and cyanide. Remarkably, the detected CYP71B15-369 

CYP73A5 and CYP71B15-CYP98A3 interactions were also observed in a reverse 370 

approach with the two phenylpropanoid biosynthetic enzymes as baits in a tandem 371 

affinity purification-based screen (Bassard et al., 2012). Possibly, direct or indirect 372 

interactions of CYP71B15 with P450 enzymes of other biosynthetic pathways involve 373 

mutual regulation of their catalytic activities. Alternatively, ER-bound P450s tend to 374 

interact as they are dependent on the reductases ATR1 or ATR2 (Bassard et al., 375 

2012). However, these P450 reductases were detected in solubilized microsomes but 376 

not significantly enriched by co-IP. In addition, a number of membrane-bound kinases 377 

were enriched. Whether this interaction has a functional significance, e.g. by 378 

phosphorylation of the biosynthetic enzymes, remains to be investigated. 379 

A second co-IP screen was performed with the aim to identify interacting proteins 380 

which are specifically inducible. Here, constitutively expressed CYP71A13 was used 381 

as a bait and UV-challenged leaves were compared with untreated controls (Fig. 4). 382 

Only one of the co-purified proteins was significantly enriched: CYP71B15. In 383 

conclusion, CYP71A13-CYP71B15 were robustly identified as a core protein complex 384 

and this interaction was confirmed by targeted co-IP and FRET-FLIM (Fig. 5, Fig. 7).  385 

The formation of biosynthetic complexes is typically a transient and reversible 386 

process (Perkins et al., 2010). For targeted co-IP the bait and interacting proteins 387 

were transiently overexpressed, enabling also interactions with proteins of low 388 

abundance in planta. Here also a CYP71A13-ATR1 interaction was observed. 389 

Furthermore, interaction of CYP71A12-CYP79B2 and CYP71A13-CYP79B2 was 390 

revealed by FRET-FLIM analysis as this method is most suitable for detecting 391 

transient interaction of proteins. As co-IP experiments with microsomal proteins as 392 

baits involve solubilisation with mild detergents, cytosolic components of the complex 393 

will not directly be solubilized and therefore depleted relative to membrane bound 394 

partners. This is probably the case for GGP1, which was not enriched in the 395 

untargeted approaches. Similarly, a soluble GST has been proposed as component 396 

of the camalexin biosynthetic machinery, but apparently, no GSTs were significantly 397 

enriched in an untargeted co-IP with CYP71B15 as bait. For the detection of 398 

interactions between known membrane bound and soluble proteins, FRET-FLIM 399 
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analysis is powerful, as it is not affected by differences in protein solubility. Here, in 400 

addition to the interaction of the camalexin biosynthetic cytochrome P450 enzymes, 401 

we observed interaction of CYP71A13 with GSTU4 and GGP1 (Fig. 7). 402 

Camalexin biosynthesis involves glutathionylation of IAN. As most Arabidopsis GSTs 403 

are capable of catalyzing this reaction in vitro in concert with CYP71A13 404 

(Supplemental Figure 5), it can be postulated that function of a specific GST in 405 

camalexin biosynthesis is rather caused by its ability to interact with the biosynthetic 406 

machinery or local substrate concentration than by its substrate specificity. GSTU4 is 407 

transcriptionally coregulated with camalexin and tryptophan biosynthetic genes and 408 

the corresponding protein was identified as physical interactor of CYP71A13 (Fig. 5, 409 

Fig. 7, Supplemental Table 1). Therefore, it was a prime candidate for being a key 410 

GST in camalexin biosynthesis. In contrast to this assumption, after infection with B. 411 

cinerea, gstu4 knockout line had elevated concentrations of camalexin, whereas in 412 

overexpression plants, camalexin levels where reduced with respect to wild type 413 

leaves. This observation is opposite to the expectations for a camalexin biosynthetic 414 

gene. The mechanism by which GSTU4 negatively interferes with camalexin 415 

biosynthesis remains unclear. One possibility is that a subcellular transport process is 416 

involved, as some GSTs such as GSTF12 (TRANSPARENT TESTA 19), act as 417 

transporters between cellular compartments rather than as glutathione transferases 418 

(Kitamura et al., 2004; Sun et al., 2012). In this case, an intermediate of the 419 

biosynthesis could be exported from the metabolon and metabolized. Alternatively, 420 

GSTU4 could have a regulatory function. The human GST Pi acts as inhibitor of Jun 421 

N-terminal kinase (JNK). In response to UV irradiation or H2O2 treatment GSTp 422 

oligomerizes and dissociates from the GSTp–JNK complex (Adler et al., 1999). 423 

Whether such GST-dependent activation mechanism in response to stress is relevant 424 

also in Arabidopsis remains to be investigated. Also, it is unclear whether the 425 

interaction between P450/GSTU4 interaction is specific for the camalexin 426 

biosynthetic machinery or might play a more general role. 427 

In conclusion, CYP79B2, CYP71A12/A13, CYP71B15, and ATR1 form a metabolic 428 

complex (Fig. 10). FRET-FLIM data indicated, that, in addition, GGP1 can be 429 

recruited to this complex. Based on the data of our untargeted co-IP screens ATR1 430 

and CYP79B2 are likely to be less tightly associated with the core camalexin 431 

biosynthetic complex. This is in accordance with their different biological functions. 432 
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ATR1 is required for many different biosynthetic processes in Arabidopsis. CYP79B2 433 

is also involved in the biosynthesis of indole glucosinolates (Hull et al., 2000; 434 

Mikkelsen et al., 2000), the biosynthesis of auxin under specific conditions (Brumos 435 

et al., 2014; Tivendale et al., 2014), and the remodeling of root architecture 436 

(Julkowska et al., 2017). A possible interaction of CYP79B2 with CYP83B1, which is 437 

involved in indole glucosinolate biosynthesis and competes with CYP71A12/A13 for 438 

IAOx, was not detected in co-IP and split-ubiquitin-based yeast 2-hybrid screens 439 

(Nintemann et al., 2017), potentially indicating a rather weak or temporary protein-440 

protein binding. CYP79B2, a key branch-point enzyme being recruited for different 441 

processes is possibly modifying the activities of downstream enzymes. In yeast 442 

microsomes expressing CYP71A13 in addition to CYP79B2, the apparent binding 443 

constant for the substrate tryptophan was significantly reduced, indicating allosteric 444 

interaction and potentially substrate channeling. A similar effect was observed for the 445 

entry enzymes of flavonoid biosynthesis (Crosby et al., 2011). For other P450 446 

enzymes of the pathway such an effect was not observed. However, they may 447 

require Arabidopsis components not present in the heterologous system. Substrate 448 

turnover numbers were not determined, as it is typically not possible to purify active 449 

membrane bound P450s to homogeneity (Cobbett et al., 1998). Therefore, the 450 

amount of mutual activation of catalytic activities might be underestimated and we 451 

hypothesize that the camalexin biosynthetic enzymes cooperatively interact to allow 452 

high flux to the end product. 453 

 454 

Material and Methods 455 

Plant growth conditions and stress treatment 456 

After stratification for 2 days, A. thaliana and N. benthamiana plants were grown in a 457 

growth chamber under long-day conditions (160 µmol m-2 s-1, 16 h light, 8 h dark) at 458 

21°C and 50% relative humidity. For induction of phytoalexin biosynthesis A. thaliana 459 

6-weeks-old rosette leaves were either sprayed with 5 mM AgNO3 or treated with UV-460 

C light for 2 h (Desaga UVVIS; λ= 254 nm, 8 W, distance: 20 cm) or infected with B. 461 

cinerea spores (strain B05.10, 2 × 105 spores per ml). Camalexin was extracted after 462 

24 h (UV-C and AgNO3 treatment) or 48 h (B. cinerea infection). 463 

 464 

Constructs for the expression of fusion proteins 465 
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For generation of CYP71B15-GFP under control of the endogenous promoter, the 466 

CYP71B15 promoter (Schuhegger et al., 2006; Chapman et al., 2016) was cloned 467 

into pBSK, and the CYP71B15 (At3g26830) CDS was introduced into this plasmid via 468 

NcoI/SmaI. The total insert was cut out by EcoRI/SmaI and introduced into pEZS-NL 469 

(Carnegie Institution). The promoter-CDS-GFP sequence was cut out with EcoRI 470 

/XbaI and introduced into the EcoRI /XbaI pGPTV-BarB vector fragment (Becker et 471 

al., 1992).  472 

Constructs for YFP- , GFP-, RFP-, and FLAG-tagged proteins were created via the 473 

Gateway cloning system (Invitrogen™, Karimi et al. (2005), Katzen (2007)). Genes 474 

were amplified from A. thaliana cDNA with the listed primers (see below) and cloned 475 

into pDONR223. Plasmids were confirmed by sequencing. Based on this LR reaction 476 

was performed and constructs were transferred to the destination vectors which 477 

contains the 35S promoter and a tag (YFP: pEarlyGate101, GFP: pB7FWG2, RFP: 478 

pB7RWG2, FLAG: pEarlyGate202).  479 

 480 

For cloning the following primers were used: 481 

Gene Primer (5´3´) 

CYP71B15 
(At3g26830) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCTTATACTGTGGCT

ATATATG 

 GGGGACCACTTTGTACAAGAAAGCTGGGTTTCCTTGCCCTGT

TCTTGTG 

CYP71A13 
(At2g30770) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGCAATATT

CAAGAAATGGA 

 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTCCACAACCGA

AGATGGAAATG 

CYP71A12 
(At2g30750) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGCAATATT

CAAGAAATGGA 

 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGAATAACGGA

AGATGGAAATGC 

CYP79B2 
(At4g39950) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAACACTTTT

AC 
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 GGGGACCACTTTGTACAAGAAAGCTGGGTCCCATCACTTCAC

CGT 

ATR1 
(At4g24520) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACTTCTGCT

TTGTATGCTTCC 

 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCACCAGAC

ATCTCTGAGGTATC 

GSTU2 
(At2g29480) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGAAGAA

AGAAGAGAGT 

 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTCGAACGTAGA

CTTAGCTCT 

GSTU4 
(At2g29460) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGGAGAA

AGAAGAGGATGTG 

 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTCGGCTGATTT

GATTCTTTCTACC 

 482 

 483 

Generation of transgenic Arabidopsis lines 484 

A. thaliana accession Columbia was transformed with Agrobacteria harboring the 485 

CYP71B15pro:CYP71B15-GFP expression construct via floral dip (Clough and Bent, 486 

1998). Phosphinothricin (PPT)-resistant primary transformants were confirmed by 487 

PCR and qualitatively screened for GFP fluorescence in response to AgNO3 488 

spraying. A high-expression line was crossed to the cyp71b15/pad3 T-DNA insertion 489 

line SALK_026585 (Xu et al., 2008; Lemarié et al., 2015) and from the F2 generation 490 

homozygous pad3 / CYP71B15pro:CYP71B15-GFP plants were selected which 491 

carried the construct and, at least partially, complemented the camalexin-deficient 492 

pad3 phenotype (Supplemental Figure 1B). The progeny of one individual was used 493 

for proteomics analysis. For constitutive expression of CYP71A13-YFP, a 494 

corresponding pEarleyGate101 construct was used. Replicates represent 495 

independent microsome preparations from independent plants. 496 

 497 

Analysis of CYP71B15-GFP localization in response to pathogens 498 
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The B. cinerea strain B05.10 was cultivated on potato dextrose agar (PDA) under 499 

UV-light (12 h darkness, 12 h light) at RT. Preparation of B. cinerea spore 500 

suspension and inoculation procedure followed instructions in Gronover et al. (2001) 501 

using 10 µl droplets of a suspension of 8 x 105 conidia per ml on fully developed 502 

Arabidopsis leaves. A. brassicicola was grown on synthetic nutrient-poor agar (SNA, 503 

(Nirenberg, 1981) under UV-light. Fully developed Arabidopsis leaves were 504 

inoculated with 10 μl droplets of a suspension of 5x104 spores per ml H2O / 0.02% 505 

(v/v) Tween20. Plants infected with B. cinerea or A. brassicicola were cultivated 506 

under normal growth conditions in a closed box in order to retain high humidity.  507 

For infection with E. cruciferarum, Arabidopsis plants were placed under an 508 

inoculation box covered with a polyamide net (0.2 mm2) and inoculated at a density 509 

of 3-5 conidia per mm2 by brushing conidia off of powdery mildew infected plants.  510 

E. cruciferarum membranes were stained with 20 μM SynaptoRed™ C2 (also known 511 

as FM-464, Sigma-Aldrich) for 15 min in the dark. Images were taken with a confocal 512 

laser-scanning microscope (Leica SP5). GFP was excited with a 488 nm laser line 513 

and detected between 500 and 530 nm, SynaptoRed™ was excited at 561 nm and 514 

detected between 600 and 645 nm.  515 

 516 

Transient expression in Nicotiana benthamiana  517 

For transient protein expression in Nicotiana benthamiana, expression plasmids were 518 

transformed into Agrobacterium tumefaciens GV3101(MP90). Correct transformants 519 

were confirmed by PCR specific for the transgene. 25 ml overnight cultures were 520 

centrifuged and resuspended in 10 mM MES, 10 mM MgCl2, 150 µM acetosyringone, 521 

pH=5.6 at an OD600 of 0.5-0.6. The cells are then incubated in a shaker for 2 h (RT) 522 

and the cultures of Agrobacterium expressing the possibly interacting proteins and 523 

the supporting strain p19 were mixed in the ratio 1:1:1 (Sparkes et al., 2006). For 524 

each sample 4-6 leaves of N. benthamiana were infiltrated on the abaxial side of the 525 

leaves with a 1 ml syringe. After infiltration, before harvesting the infiltrated leaves, 526 

the plants were incubated for 3 d in a growth chamber under long-day conditions 527 

(160 µmol m-2 s-1, 16 h light, 8 h dark) at 21°C.  528 

 529 

Plant microsome generation and co-immunoprecipitation 530 
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Infiltrated leaves were harvested and ground with a mix of sea sand and Polyklar® 531 

AT (Serva) (ratio 1:1) and 5 ml of ice-cold buffer 1 (100 mM ascorbic acid, 50 mM 532 

Na2SO4, 250 mM Tricin, 2 mM EDTA, DTE 2 mM, 5 g/L BSA, pH 8,2). 20 ml of buffer 533 

1 was added and the homogenate was centrifuged (20,000xg, 4°C, 10 min). The 534 

supernatant was filtrated via a gauze bandage and centrifuged again. Microsomes 535 

were pelletized by centrifugation (60000xg, 4°C, 2 h) and in 1.5 ml buffer 2 (50 mM 536 

NaCl, 100 mM Tricin, 250 mM sucrose, 2 mM EDTA, 2 mM DTE, pH 8,2) 537 

resuspended. 538 

For solubilisation, 500 µl microsomes were mixed with Triton X-100 to a final 539 

concentration of 0.5%. The samples are incubated at 4°C for 1 h under constant 540 

shaking and centrifuged (20000xg, 1.5 h, 4°C). The supernatant was transferred to a 541 

new Eppendorf tube and protein concentration determined photometrically (BIO-RAD 542 

Protein Assay). 543 

For untargeted co-IP, GFP-Trap® A beads (Chromotek, Munich, Germany; Rothbauer 544 

et al. (2008)) were equilibrated with co-IP buffer (10 mM Tris; 150 mM NaCl; 0.5 mM 545 

EDTA) and mixed with 1 volume microsomes solubilized in 1% Triton X-100 (100 µl 546 

beads in a total volume of 4 ml for bait expressed under endogenous promoter, 50 µl 547 

beads / 2 ml for bait expressed under the 35S promoter). After incubation for 1 h at 548 

4°C under constant shaking, beads were centrifuged (2700xg, 4°C, 2 min) and 549 

washed three times with co-IP buffer. The supernatant was replaced by 30 µl 550 

NuPAGE® LDS Sample Buffer (4x, Invitrogen GmbH, Karlsruhe, Germany) together 551 

with 30 µl 100 mM DTT and incubated at 70°C for 15 min. Targeted co-IP was 552 

performed with 10 µl GFP-Trap® A beads each, in a total volume of 500 µl. The 553 

samples were analyzed via western blot using anti-FLAG (Sigma, F1804) and anti-554 

GFP (Invitrogen, A-11122) antibody followed by staining with goat anti-mouse HRP 555 

(Bio-Rad, 172-1011) or goat anti-rabbit HRP (Life Technologies, 65-6120) 556 

respectively (dilution of all antibodies 1:3000). Replicates represent independent 557 

microsome preparations from independent plants. 558 

 559 

Protein identification by liquid chromatography and tandem mass spectrometry (LC-560 

MS/MS)  561 

In-gel digestion  562 
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Protein samples were reduced by 10 mM dithiothreitol, and alkylated by 55 mM 563 

iodoacetamide (CYP71B15 dataset) or 55 mM chloroacetamide (CYP71A13 dataset). 564 

Proteins were run into a 4–12% NuPAGE gel for about 1 cm to concentrate the 565 

sample prior to in-gel tryptic digestion. In-gel trypsin digestion was performed 566 

according to standard procedures (Shevchenko et al., 2006).  567 

LC-MS/MS analysis of CYP71B15 experiments 568 

Peptides generated by in-gel trypsin digestion were analyzed via LC-MS/MS on a 569 

nanoLC‐Ultra 1D+ (Eksigent, Dublin, CA) coupled to an LTQ‐Orbitrap Elite mass 570 

spectrometer (ThermoFisher Scientific). Peptides were delivered to a trap column 571 

(Reprosil-Pur C18 ODS3 5 µm resin, Dr. Maisch, Ammerbuch, Germany, 20 mm × 75 572 

μm, self-packed) at a flow rate of 5 μl/min in 100% solvent A0 (0.1% formic acid in 573 

HPLC grade water). Peptides were then transferred to an analytical column 574 

(Reprosil-Gold C18 120, 3 μm, Dr. Maisch, Ammerbuch, Germany, 400 mm × 75 μm, 575 

self-packed) and separated using a 110 min gradient from 4% to 32% solvent B 576 

(0.1% formic acid and 5% DMSO in acetonitrile) in A (0.1% formic acid and 5% 577 

DMSO in HPLC grade water) at a flow rate of 300 nl/min. The mass spectrometer 578 

was operated in data dependent mode, automatically switching between MS and 579 

MS2 spectra. Up to 15 peptide precursors were subjected to fragmentation by higher 580 

energy collision-induced dissociation (HCD) and analyzed in the Orbitrap. Dynamic 581 

exclusion was set to 20 s.  582 

LC-MS/MS analysis of CYP71A13 experiments 583 

Peptides generated by in-gel trypsin digestion were analyzed via LC-MS/MS on a 584 

nanoLC-Ultra 1D+ (Eksigent, Dublin, CA) coupled to a Q Exactive HF mass 585 

spectrometer (ThermoFisher Scientific). Peptides were delivered to a trap column 586 

(75 µm x 2 cm, packed in house with Reprosil-Pur C18 ODS3 5 µm resin, Dr. 587 

Maisch) for 10 min at a flow rate of 5 µl/min in 100% solvent A0 (0.1% formic acid in 588 

HPLC grade water). Peptides were then separated on an analytical column (75 µm x 589 

40 cm, packed in-house with Reprosil-Gold C18 120, 3 µm resin, Dr. Maisch) using a 590 

120 min gradient ranging from 4-32% solvent B (0.1% formic acid and 5% DMSO in 591 

acetonitrile) in A (0.1% formic acid and 5% DMSO in HPLC grade water) at a flow 592 

rate of 300 nl/min. The mass spectrometer was operated in data dependent mode, 593 

automatically switching between MS and MS2 spectra. Up to 20 peptide precursors 594 
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were subjected to fragmentation by higher energy collision-induced dissociation 595 

(HCD) and analyzed in the Orbitrap. Dynamic exclusion was set to 20 s.  596 

Peptide and protein identification and quantification 597 

Label free quantification was performed using MaxQuant (version 1.6.1.0) (Cox and 598 

Mann, 2008) by searching MS data against an Arabidopsis thaliana reference 599 

database derived from UniProt (version 09.07.2016, 31424 entries) using the 600 

embedded search engine Andromeda (Cox et al., 2011). Carbamidomethylated 601 

cysteine was used as fixed modification; variable modifications included oxidation of 602 

methionine and N-terminal protein acetylation. Trypsin/P was specified as proteolytic 603 

enzyme with up to two allowed missed cleavage sites. Precursor tolerance was set to 604 

10 ppm and fragment ion tolerance was set to 20 ppm. Label-free quantification (Cox 605 

et al., 2014), match-between-runs and intensity-based absolute quantification options 606 

were enabled and results were filtered for a minimal length of seven amino acids, 1% 607 

peptide and protein FDR as well as common contaminants and reverse 608 

identifications. 609 

Data analysis and visualization 610 

MaxQuant results were imported into the MaxQuant associated software suite 611 

Perseus (v.1.5.8.5) (Tyanova and Cox, 2018). Label-free quantification intensities 612 

(LFQ) were filtered for at least 3 valid values for at least one experimental group and 613 

at least 3 peptides for identification per protein. Missing values were imputed from 614 

normal distribution (width 0.2, downshift 2.0). A two-sided unpaired student’s t-test 615 

was performed to assess statistical significance. Protein p-values were corrected for 616 

multiple testing using a permutation based 1% FDR cut-off (1000 permutations). 617 

Standard functions in the SAM R-package were used to adjust s0 for each dataset 618 

(Tusher et al., 2001). For the CYP71B15 scatter plots proteins were filtered for at 619 

least 2 valid values for at least one experimental group and at least 3 peptides for 620 

identification per protein. Means were calculated and missing values were imputed by 621 

a constant (constant: 0). 622 

Data deposition 623 

Mass spectrometry data have been deposited to the ProteomeXchange Consortium 624 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 625 

(Vizcaíno et al., 2012) with the dataset identifier PXD008812 (reviewer account: 626 

username: reviewer70359@ebi.ac.uk, password: MRXOTnDO). 627 
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 628 

Yeast transformation, protein expression, yeast microsomes, enzyme analysis and 629 

yeast feeding experiments 630 

The Saccharomyces cerevisiae strain BY4741 (Brachmann et al., 1998), auxotroph 631 

for His, Leu, Met and Ura, was used for coexpression of ATR1 (on plasmid 632 

pGREG505), CYP79B2 (on plasmid pYeDP60) and CYP71A13 (on plasmid pSH62) 633 

or the corresponding vector control. Transformations were performed according to 634 

Gietz et al. (1992). Yeasts were cultivated and microsomes were prepared essentially 635 

as described by (Schuhegger et al., 2006) , with the modification that instead of 636 

SGIW medium the selection medium SD was used (Amberg et al., 2005). 637 

Microsomes were resuspended in TEG buffer (50 mM Tris pH 7.5, 1 mM EDTA, 20% 638 

glycerol, 2 mM DTE) and incubated with 0.5 mM NADPH and 5-200 µM of tryptophan 639 

for 45 to 90 min. To stop the reaction 2 Vol. of 100% methanol were added and the 640 

reaction mix was centrifuged twice to remove macroscopic contaminants. The 641 

conversion of tryptophan to indole-3-acetaldoxime was monitored by reverse-phase 642 

HPLC (Lichrosphere 100 RP-18, 250 x 3 mm, 5 µM, Merck; flow rate of 0.6 mL min-643 

1; solvents, 0.3% (v/v) formic acid in water (A) and acetonitrile (B); gradient: 0 to 2 644 

min, isocratic, 25% B; 2 to 10.5 min, linear from 25% to 45% B; 10.5 to 13 min, linear 645 

from 45% to 100% B; 13 to 15 min, isocratic, 100% B) and quantified based on a 646 

calibration curve of the authentic standard (Glawischnig et al., 2004). Determination 647 

of Km values was performed via GraphPad PrismGraph (Michaelis-Menten analysis). 648 

For feeding experiments yeasts carrying ATR1 (on plasmid pGREG505), CYP71A13 649 

(on plasmid pYeDP60) and one out of 54 GSTs (on plasmid pSH62) were grown in 650 

SD medium with appropriate supplements (-His, -Leu, -Met, -Ura) until OD600 = 0.6 651 

was reached. Protein expression was induced by addition of galactose for 16 h. 652 

Feeding was performed with 0.1 mM IAN and 0.2 mM GSH for 24 h. Subsequently 653 

yeast cells were harvested, washed in ddH2O, and 350 µl methanol:formic acid; 654 

99.8%:0.2% (v/v) was added. After vortexing and incubation at room temperature for 655 

15 min under constant shaking cell debris were removed and GS-IAN formation 656 

analyzed via HPLC (Lichrosphere 100 RP-18, 250 x 3 mm, 5 µM, Merck; flow rate of 657 

0.6 mL min-1; solvents, 0.3% (v/v) formic acid in water (A) and acetonitrile (B); 658 

gradient: 0 to 2 min, isocratic, 25% B; 2 to 19 min, linear from 25% to 50% B; 19 to 659 

24 min, linear from 50% to 100% B; 24 to 26 min, isocratic, 100% B), calibrating with 660 
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the authentic standard.  661 

 662 

Confocal microscopy and FRET-FLIM analysis 663 

For co-localization experiments leaf epidermal samples were imaged using a Zeiss 664 

PlanApo ×100/1.46 NA oil immersion objective on a Zeiss LSM880 confocal 665 

equipped with an Airyscan detector. 512 × 512 images were collected in 8-bit with 2-666 

line averaging at an (x,y) pixel spacing of 20–80 nm with excitation at 488 nm (GFP) 667 

and 561 nm (RFP), and emission at 495–550 nm and 570–615 nm, respectively. 668 

Data was produced from at least three independent biological replicates, defined as 669 

separate plants independently infiltrated from glycerol stocks. At least twenty cells 670 

per combination were imaged in a randomized manner. 671 

FRET-FLIM analysis was performed according to Kriechbaumer et al. (2015). In brief: 672 

Epidermal samples of infiltrated leaves were excised and multiphoton FRET-FLIM 673 

data capture was performed by a two-photon microscope built around a Nikon 674 

TE2000-U inverted microscope with a modified Nikon EC2 confocal scanning system. 675 

Laser light at a wavelength of 920 nm was produced by a mode-locked titanium 676 

sapphire laser (Mira; Coherent Lasers), with 200-fs pulses at 76 MHz, pumped by a 677 

solid-state continuous wave 532-nm laser (Verdi V18; Coherent Laser). The laser 678 

beam was focused to a diffraction limited spot using a water-immersion objective 679 

(Nikon VC; 360, numerical aperture of 1.2). Fluorescence emission was collected 680 

bypassing the scanning system and passed through a BG39 (Comar) filter to block 681 

the near-infrared laser light. Line, frame, and pixel clock signals were generated and 682 

synchronized with an external detector in the form of a fast microchannel plate 683 

photomultiplier tube (Hamamatsu R3809U). Raw FRET-FLIM data was generated by 684 

linking these via a time-correlated single-photon counting PC module SPC830 685 

(Becker and Hickl). Prior to FLIM data collection, the GFP and mRFP expression 686 

levels in the plant samples within the region of interest were confirmed using a Nikon 687 

EC2 confocal microscope with excitation at 488 and 543 nm, respectively. A 633-nm 688 

interference filter is used to significantly minimize the contaminating effect of 689 

chlorophyll autofluorescence emission.  690 

Data were analyzed by obtaining excited-state lifetime values first on a pixel by pixel 691 

basis, then of a region of interest on the nuclear envelope, and calculations were 692 

made using SPCImage analysis software version 5.1. The distribution of lifetime 693 
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values within the region of interest was generated and displayed as a curve. Only 694 

values with a χ2 between 0.9 and 1.4 were considered. The median lifetime, 695 

minimum and maximum values for one-quarter of the median lifetime values from the 696 

curve were taken to generate the range of lifetimes per sample. Data from a 697 

minimum of three independent biological replicas and at least five nuclei per replica 698 

and per protein-protein combination were analyzed, and the average of the ranges 699 

was taken. Biological replicas are defined as separate plants independently infiltrated 700 

and analyzed. 701 

 702 

Camalexin extraction 703 

Camalexin extraction was performed according to (Müller et al., 2015). In brief, 704 

leaves were weighed and 400 µl of methanol:water (80:20, v/v) was added. After 705 

incubation for 1 h at 65°C under constant shaking, extracts were cleaned twice via 706 

centrifugation and analyses by reverse-phase HPLC (MultoHigh 100 RP18, 5-mm 707 

particle size; Göhler Analytik). 708 

 709 
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Figure Legends 734 

Fig.1: Biosynthetic pathway of camalexin and related metabolites 735 

 736 

Fig.2: CYP71B15-GFP accumulates in cells surrounding fungal infection sites 737 

 738 

Fig. 3: Proteins co-purified with CYP71B15-GFP from leaves infected with B. cinerea 739 

 740 

Fig. 4: Proteins co-purified from leaves overexpressing CYP71A13 with or without UV 741 

irradiation  742 
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Fig. 5: Co-IP analysis of the physical association of camalexin-specific enzymes 744 
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Fig. 6: Co-localization of camalexin-specific enzymes in N. benthamiana leaves 746 
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Fig. 7: Tight physical interaction of camalexin-biosynthesis enzymes supported by 748 

Förster Resonance Energy Transfer studies combined with Fluorescence Life Time 749 

Microscopy (FRET-FLIM) 750 
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Fig. 8: Higher apparent substrate affinity of CYP79B2 by presence of CYP71A13 752 
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Fig. 9: Camalexin formation in response to B. cinerea infection in gstu4 knockout and 754 

overexpression plants 755 
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Fig. 10: Model of a camalexin-biosynthetic metabolon 757 
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Figure 1: Biosynthetic pathway of camalexin and related metabolites
Enzymes are marked in red, detected compounds are labeled in blue and biosynthetic
intermediates in black; IMG: indole-3-methylglucosinolate; IAOx: indole-3-
acetaldoxime; IAN: indole-3-acetonitrile; GS-IAN: IAN glutathione conjugate; ICOOH:
indole-3-carboxylic acid.
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Figure 2: CYP71B15-GFP accumulates in cells surrounding fungal infection
sites.
CYP71B15pro:CYP71B15-GFP expressing plants were inoculated with spores of B.
cinerea, A. brassicicola, or E. cruciferarum, and expression of CYP71B15-GFP at
fungal infections sites was detected. A-C: Site of infection with nectrotrophic B. cinerea
(central transparent leaf area) 24 hai. D-F: Higher magnification of the area indicated
by the square in A-C. Asterisks indicate spores from which hyphae emerged. G-L: Sites
of infection with A. brassicicola 18 hai. Asterisks indicate spores from which hyphae
emerged. M-R: Sites of successful infection by the biotrophic powdery mildew fungus
E. cruciferarum 24 hai. Arrowheads indicate sites of fungal attack/penetration; asterisks
indicate non-germinated spores. The first column of pictures shows transmission
channel images (A, D, G, J) or red staining of fungal structures after staining with FM4-
64 (M, P), images in the second column show CYP71B15-GFP accumulation, and the
third columns shows the overlay images of the two. Bars = 50 μm.



Figure 3: Proteins co-purified with CYP71B15-GFP from leaves infected with B.
cinerea
CYP71B15-GFP was expressed under control of its endogenous promoter in the pad3
background. The enrichment of interacting proteins in co-IP experiments (log2 fold
change) is plotted against the significance of the change (–log10 p-value). Cytochrome
P450 enzymes, represented by blue circles, all other proteins by open squares and
there respective size represents log2 Label-free quantification intensities (LFQ). P450
enzymes were strongly enriched including CYP71A13 and CYP71B6. P450 proteins
above log2 LFQ intensity of 25 and those mentioned in the text are indicated. n=3.
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Figure 4: Proteins co-purified from leaves overexpressing CYP71A13-YFP with
or without UV irradiation
The log2 fold change (UV-irradiated versus untreated leaves) is plotted against the
significance of the change (–log10 p-value). Cytochrome P450 enzymes, represented
by blue circles, all other proteins by open squares and there respective size represents
log2 Label-free quantification intensities (LFQ). Named are proteins enriched
significantly in UV or in control samples. UV-dependent co-purification of CYP71B15
was observed. n=3.
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Figure 5: Co-IP analysis of the physical association of camalexin-specific enzymes

YFP and FLAG-tagged fusion proteins were transiently expressed in N. benthamiana and
microsomal proteins were extracted four days after infiltration. Here, CYP71B15 (B15) in
combination with CYP71A13 (A13) (1), CYP71A12 (A12) (2) or GSTU4 (U4) (4) and
CYP71A13 in combination with GSTU4 (3) or ATR1 (5) A: Western blot analysis of input
samples. B: Western Blot analysis on immunoprecipitation (IP) samples. IP was
performed with anti-GFP antibody and interacting proteins were analysed with an anti-
FLAG antibody. Interaction was shown for CYP71A13-FLAG with CYP71B15-YFP (1),
GSTU4-YFP(3) and ATR1-YFP (5) and for CYP71B15-YFP with CYP71A12-FLAG (2)
and GSTU4-FLAG (4). The experiment was repeated at least three times, with similar
results. Combinations of fusion proteins, where no co-IP was observed are shown in
Supplementary Figure 3.
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Figure 6: Co-localization of camalexin-specific enzymes in N. benthamiana leaves
In each case two GFP or RFP labelled P450 enzymes (A, B, D, E, G, H, K, N, Q ) in

different combinations or together with either GGP1-RFP (J), GSTU4-RFP (M) or GSTU2-

RFP (P) were expressed transiently in N. benthamiana and analyzed for localization and
co-localization three days after infiltration. Fluorescence signals for CYP71B15,

CYP71A13, CYP71A12 and CYP79B2 fusion proteins were detected at the ER (A, B, D,

E, G, H) with CYP79B2 expression levels substantially lower than the other proteins (G).

GSTU4 (M) and GSTU2 (P) showed cytosolic localization indicated by the typical nuclear

localization. Co-localization for CYP71A13 with CYP71B15 (C) and CYP79B2 (I) is shown

in the merged images. Furthermore, CYP71B15 co-localizes with CYP71A12 (F) whereas

no signal overlap is detectable when CYP71A13 is co-expressed with the cytosolic

proteins GSTU4 (O) or GSTU2 (R) (see also Supplementary Fig. 4). Scale bar: 10 μm
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Figure 7: Tight physical interaction of camalexin-biosynthesis enzymes supported
by Förster resonance energy transfer studies combined with fluorescence lifetime
microscopy (FRET-FLIM)
GFP-tagged CYP71A12 (A), CYP71A13 (B) or CYP71B15 (C) was transiently expressed
in N. benthamiana alone (black bars), or in combination with different RFP-tagged
proteins (white bars). Three days after inoculation protein-protein interaction was
determined by measuring the GFP-fluorescence lifetime via FLIM. In case of FRET a
significant reduction of GFP-fluorescence lifetime was detectable compared to the donor
only sample. Physical interaction could be observed for CYP71A12, CYP71A13,
CYP71B15 with each other and with CYP79B2, GGP1, and GSTU4. No interaction with
GSTU2 and no homodimerization of CYP71A12 or CYP71B15 was observed. Error bars
indicate standard deviation of at least three independent replicates. One-way Anova for
independent samples, standard weighted-means analysis, with Tukey's honestly
significant difference (HSD) post hoc test; *p<0.05; **p<0.01.
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Figure 8: Higher apparent substrate affinity of CYP79B2 by presence of
CYP71A13
CYP79B2 was expressed in S. cerevisiae together with CYP71A13 or vector control.
A: Turnover of tryptophan with NADPH as co-substrate by corresponding
microsomes; detection of substrate and products by HPLC; chromatogram at 278
nm. B: app. Km-value for tryptophan: CYP79B2: Km=17.5 ± 1.9 µM, R2=0.95;
CYP79B2 / CYP71B13: Km=6.9 ± 0.9 µM, R2=0.90 (n=16).
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Figure 9: Camalexin formation in response to B. cinerea infection in gstu4

knockout and overexpression plants

Leaves of six-week-old plants were treated with B. cinerea spores. After 48 hours

camalexin was extracted and levels were analyzed via HPLC. In gstu4 lines camalexin

level was significantly increased whereas a significant decrease was observed in

GSTU4 overexpressing lines. Camalexin levels were shown as arithmetic mean with

standard deviation of 27 independent plants Different letters indicate significant

differences according to ANOVA (Scheffé’s test; P < 0.05); *: significant differences to

Col-0 according to t-test (P < 0.05).
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Figure 10: Model of a camalexin-biosynthetic metabolon

CYP79B2, CYP71A12/A13, CYP71B15 and ATR1 form a metabolic complex at

the ER surface. CYP71B15 interacts with CYP79B2, CYP71A13 and

CYP71A12 respectively. CYP79B2 is rather loosely associated to the complex

and might function as a branch-point enzyme taking part in different protein

complexes. Under stress conditions, the cytosolic component GSTU4 might be

recruited to the complex. Its role in camalexin biosynthesis remains unsettled.
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