23 research outputs found

    Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.

    Get PDF
    Multisite phosphorylation of proteins has been proposed to transform a graded protein kinase signal into an ultrasensitive switch-like response. Although many multiphosphorylated targets have been identified, the dynamics and sequence of individual phosphorylation events within the multisite phosphorylation process have never been thoroughly studied. In Saccharomyces cerevisiae, the initiation of S phase is thought to be governed by complexes of Cdk1 and Cln cyclins that phosphorylate six or more sites on the Clb5-Cdk1 inhibitor Sic1, directing it to SCF-mediated destruction. The resulting Sic1-free Clb5-Cdk1 complex triggers S phase. Here, we demonstrate that Sic1 destruction depends on a more complex process in which both Cln2-Cdk1 and Clb5-Cdk1 act in processive multiphosphorylation cascades leading to the phosphorylation of a small number of specific phosphodegrons. The routes of these phosphorylation cascades are shaped by precisely oriented docking interactions mediated by cyclin-specific docking motifs in Sic1 and by Cks1, the phospho-adaptor subunit of Cdk1. Our results indicate that Clb5-Cdk1-dependent phosphorylation generates positive feedback that is required for switch-like Sic1 destruction. Our evidence for a docking network within clusters of phosphorylation sites uncovers a new level of complexity in Cdk1-dependent regulation of cell cycle transitions, and has general implications for the regulation of cellular processes by multisite phosphorylation

    Compartmentalization of a Bistable Switch Enables Memory to Cross a Feedback-Driven Transition

    Get PDF
    SummaryCells make accurate decisions in the face of molecular noise and environmental fluctuations by relying not only on present pathway activity, but also on their memory of past signaling dynamics. Once a decision is made, cellular transitions are often rapid and switch-like due to positive feedback loops in the regulatory network. While positive feedback loops are good at promoting switch-like transitions, they are not expected to retain information to inform subsequent decisions. However, this expectation is based on our current understanding of network motifs that accounts for temporal, but not spatial, dynamics. Here, we show how spatial organization of the feedback-driven yeast G1/S switch enables the transmission of memory of past pheromone exposure across this transition. We expect this to be one of many examples where the exquisite spatial organization of the eukaryotic cell enables previously well-characterized network motifs to perform new and unexpected signal processing functions

    Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling

    Get PDF
    Author Summary Human activities have increased the concentrations of CO2 and harmful air pollutants such as ozone in the troposphere. These changes can have detrimental consequences for agricultural productivity. Guard cells, which form stomatal pores on leaves, regulate plant gas exchange. To maintain photosynthesis, stomata open to allow CO2 uptake, but at the same time, open stomata lead to loss of water and allow the entrance of ozone. Elevated atmospheric CO2 levels reduce stomatal apertures, which can improve plant water balance but also increases leaf temperature. Using genetic approaches—in which we exploit natural variation and mutant analysis of thale cress (Arabidopsis thaliana)—we find that MITOGEN-ACTIVATED PROTEIN KINASE 12 (MPK12) and its inhibitory interaction with another kinase, HIGH LEAF TEMPERATURE 1 (HT1) (involved in guard cell CO2 signaling), play a key role in this regulatory process. We have therefore identified a mechanism in which guard cell CO2 signaling regulates how efficiently plants use water and cope with the air pollutant ozone.Peer reviewe

    A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry

    No full text
    BACKGROUND: Eukaryotic cell division is driven by cyclin-dependent kinases (CDKs). Distinct cyclin-CDK complexes are specialized to drive different cell-cycle events, though the molecular foundations for these specializations are only partly understood. In budding yeast, the decision to begin a new cell cycle is regulated by three G1 cyclins (Cln1-Cln3). Recent studies revealed that some CDK substrates contain a novel docking motif that is specifically recognized by Cln1 and Cln2, and not by Cln3 or later S- or M-phase cyclins, but the responsible cyclin interface was unknown. RESULTS: Here, to explore the role of this new docking mechanism in the cell cycle, we first show that it is conserved in a distinct cyclin subtype (Ccn1). Then, we exploit phylogenetic variation to identify cyclin mutations that disrupt docking. These mutations disrupt binding to multiple substrates as well as the ability to use docking sites to promote efficient, multi-site phosphorylation of substrates in vitro. In cells where the Cln2 docking function is blocked, we observed reductions in the polarized morphogenesis of daughter buds and reduced ability to fully phosphorylate the G1/S transcriptional repressor Whi5. Furthermore, disruption of Cln2 docking perturbs the coordination between cell size and division, such that the G1/S transition is delayed. CONCLUSIONS: The findings point to a novel substrate interaction interface on cyclins, with patterns of conservation and divergence that relate to functional distinctions among cyclin subtypes. Furthermore, this docking function helps ensure full phosphorylation of substrates with multiple phosphorylation sites, and this contributes to punctual cell-cycle entry

    Dynamics of Cdk1 Substrate Specificity during the Cell Cycle

    No full text
    Cdk specificity is determined by the intrinsic selectivity of the active site and by substrate docking sites on the cyclin subunit. There is a long-standing debate about the relative importance of these factors in the timing of Cdk1 substrate phosphorylation. We analyzed major budding yeast cyclins (the G1/S-cyclin Cln2, S-cyclin Clb5, G2/M-cyclin Clb3, and M-cyclin Clb2) and found that the activity of Cdk1 toward the consensus motif increased gradually in the sequence Cln2-Clb5-Clb3-Clb2, in parallel with cell cycle progression. Further, we identified a docking element that compensates for the weak intrinsic specificity of Cln2 toward G1-specific targets. In addition, Cln2-Cdk1 showed distinct consensus site specificity, suggesting that cyclins do not merely activate Cdk1 but also modulate its active-site specificity. Finally, we identified several Cln2-, Clb3-, and Clb2-specific Cdk1 targets. We propose that robust timing and ordering of cell cycle events depend on gradual changes in the substrate specificity of Cdk1
    corecore