115 research outputs found

    A Fast Alternative to Soft Lithography for the Fabrication of Organ-on-a-Chip Elastomeric-Based Devices and Microactuators

    Get PDF
    Organ-on-a-chip technology promises to revolutionize how pre-clinical human trials are conducted. Engineering an in vitro environment that mimics the functionality and architecture of human physiology is essential toward building better platforms for drug development and personalized medicine. However, the complex nature of these devices requires specialized, time consuming, and expensive fabrication methodologies. Alternatives that reduce design-to-prototype time are needed, in order to fulfill the potential of these devices. Here, a streamlined approach is proposed for the fabrication of organ-on-a-chip devices with incorporated microactuators, by using an adaptation of xurography. This method can generate multilayered, membrane-integrated biochips in a matter of hours, using low-cost benchtop equipment. These devices are capable of withstanding considerable pressure without delamination. Furthermore, this method is suitable for the integration of flexible membranes, required for organ-on-a-chip applications, such as mechanical actuation or the establishment of biological barrier function. The devices are compatible with cell culture applications and present no cytotoxic effects or observable alterations on cellular homeostasis. This fabrication method can rapidly generate organ-on-a-chip prototypes for a fraction of cost and time, in comparison to conventional soft lithography, constituting an interesting alternative to the current fabrication methods.C.O. and P.L.G. contributed equally to this work as co‐senior authors. This work was supported by Fundação para a Ciência e Tecnologia (FCT) and Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences (BiotechHealth Programme; ref. PD/00016/2012), by Programa Operacional Potencial Humano (POPH), and SkinChip project (PTDC/BBB‐BIO/1889/2014). The work has been also financed by: 1) Fundo Europeu de Desenvolvimento (FEDER) Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI‐01‐0145‐FEDER‐007274), 3DChroMe (PTDC/BTM‐TEC/30164/2017); Norte Portugal Regional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) for projects NORTE‐01‐0145‐FEDER‐000029 and DOCnet (NORTE‐01‐0145‐FEDER‐000003). D.A.F. acknowledges FCT for his support through a FCT/BiotechHealth PhD Programme grant, ref. PD/BD/105976/2014. J.P.C. acknowledges funding from the European Structural and Investment funds through the Compete Programme (Grant #: LISBOA‐01‐0145‐FEDER‐016405) and from National funds through FCT (SAICTPAC/0019/2015) via the research project POINT4PAC, and FCT funding through INESC MN (Unidade ID 5367). The authors would also like to thank: Jorge Ferreira (Chromosome Instability Group, i3S/IBMC) for granting access to the plasma cleaner equipment and for the insightful scientific support; i3S Scientific Platform (Biointerfaces and Nanotechnology core facility, i3S/INEB), member of the national infrastructure PPBI – Portuguese Platform of Bioimaging (PPBI‐POCI‐01‐0145‐FEDER‐022122), in particular Maria Lázaro for support and access to the SP5 confocal microscope; Aureliana Sousa (Biofabrication Group at i3S/INEB) for scientific support and discussion; Dina Leitão (Centro Hospitalar e Universitário São João) for providing access to the normal gastric mucosa specimens; Celso Reis for kindly providing the antibody against Mucin‐1. C.O. and P.L.G. contributed equally to this work as co-senior authors. This work was supported by Funda??o para a Ci?ncia e Tecnologia (FCT) and Doctoral Programme on Cellular and Molecular Biotechnology Applied to?Health Sciences (BiotechHealth Programme; ref.?PD/00016/2012),?by Programa Operacional Potencial Humano (POPH), and SkinChip project (PTDC/BBB-BIO/1889/2014). The work has been also financed by: 1) Fundo Europeu de Desenvolvimento (FEDER) Regional funds through the COMPETE 2020 ? Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT/Minist?rio da Ci?ncia, Tecnologia e Inova??o in the framework of the projects ?Institute for Research and Innovation in Health Sciences? (POCI-01-0145-FEDER-007274), 3DChroMe (PTDC/BTM-TEC/30164/2017); Norte Portugal Regional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) for projects NORTE-01-0145-FEDER-000029 and DOCnet (NORTE-01-0145-FEDER-000003). D.A.F. acknowledges FCT for his support through a FCT/BiotechHealth PhD Programme grant, ref. PD/BD/105976/2014. J.P.C. acknowledges funding from the European Structural and Investment funds through the Compete Programme (Grant #: LISBOA-01-0145-FEDER-016405) and from National funds through FCT (SAICTPAC/0019/2015) via the research project POINT4PAC, and FCT funding through INESC MN (Unidade ID 5367). The authors would also like to thank: Jorge Ferreira (Chromosome Instability Group, i3S/IBMC) for granting access to the plasma cleaner equipment and for the insightful scientific support; i3S Scientific Platform (Biointerfaces and Nanotechnology core facility, i3S/INEB), member of the national infrastructure PPBI ? Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122), in particular Maria L?zaro for support and access to the SP5 confocal microscope; Aureliana Sousa (Biofabrication Group at i3S/INEB) for scientific support and discussion; Dina Leit?o (Centro Hospitalar e Universit?rio S?o Jo?o) for providing access to the normal gastric mucosa specimens; Celso Reis for kindly providing the antibody against Mucin-1

    An E2F1-Mediated DNA Damage Response Contributes to the Replication of Human Cytomegalovirus

    Get PDF
    DNA damage resulting from intrinsic or extrinsic sources activates DNA damage responses (DDRs) centered on protein kinase signaling cascades. The usual consequences of inducing DDRs include the activation of cell cycle checkpoints together with repair of the damaged DNA or induction of apoptosis. Many DNA viruses elicit host DDRs during infection and some viruses require the DDR for efficient replication. However, the mechanism by which DDRs are activated by viral infection is poorly understood. Human cytomegalovirus (HCMV) infection induces a DDR centered on the activation of ataxia telangiectasia mutated (ATM) protein kinase. Here we show that HCMV replication is compromised in cells with inactivated or depleted ATM and that ATM is essential for the host DDR early during infection. Likewise, a downstream target of ATM phosphorylation, H2AX, also contributes to viral replication. The ATM-dependent DDR is detected as discrete, nuclear γH2AX foci early in infection and can be activated by IE proteins. By 24 hpi, γH2AX is observed primarily in HCMV DNA replication compartments. We identified a role for the E2F1 transcription factor in mediating this DDR and viral replication. E2F1, but not E2F2 or E2F3, promotes the accumulation of γH2AX during HCMV infection or IE protein expression. Moreover, E2F1 expression, but not the expression of E2F2 or E2F3, is required for efficient HCMV replication. These results reveal a novel role for E2F1 in mediating an ATM-dependent DDR that contributes to viral replication. Given that E2F activity is often deregulated by infection with DNA viruses, these observations raise the possibility that an E2F1-mediated mechanism of DDR activation may be conserved among DNA viruses

    Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): A cross-sectional and longitudinal study

    Get PDF
    BACKGROUND: The debate about a possible relationship between aerobic fitness and motor skills with cognitive development in children has recently re-emerged, because of the decrease in children's aerobic fitness and the concomitant pressure of schools to enhance cognitive performance. As the literature in young children is scarce, we examined the cross-sectional and longitudinal relationship of aerobic fitness and motor skills with spatial working memory and attention in preschool children. METHODS: Data from 245 ethnically diverse preschool children (mean age: 5.2 (0.6) years, girls: 49.4%) analyzed at baseline and 9 months later. Assessments included aerobic fitness (20 m shuttle run) and motor skills with agility (obstacle course) and dynamic balance (balance beam). Cognitive parameters included spatial working memory (IDS) and attention (KHV-VK). All analyses were adjusted for age, sex, BMI, migration status, parental education, native language and linguistic region. Longitudinal analyses were additionally adjusted for the respective baseline value. RESULTS: In the cross-sectional analysis, aerobic fitness was associated with better attention (r=0.16, p=0.03). A shorter time in the agility test was independently associated with a better performance both in working memory (r=-0.17, p=0.01) and in attention (r=-0.20, p=0.01). In the longitudinal analyses, baseline aerobic fitness was independently related to improvements in attention (r=0.16, p=0.03), while baseline dynamic balance was associated with improvements in working memory (r=0.15, p=0.04). CONCLUSIONS: In young children, higher baseline aerobic fitness and motor skills were related to a better spatial working memory and/or attention at baseline, and to some extent also to their future improvements over the following 9 months. TRIAL REGISTRATION: clinicaltrials.gov NCT0067454

    Polychlorinated Biphenyls and Biotransformation Enzymes in Three Species of Sea Turtles from the Baja California Peninsula of Mexico

    Get PDF
    Concentrations of polychlorinated biphenyls (PCBs) as well as the expression patterns of cytochrome P450 (CYP) enzymes and glutathione-S-transferase (GST) activities were measured in livers of loggerhead (Caretta caretta), green (Chelonia mydas), and olive ridley (Lepidocheyls olivacea) sea turtles from the Baja California peninsula of Mexico. The mean concentrations of total PCBs were 18.1, 10.5, and 15.2 ng/g wet weight (ww) respectively for the three species and PCB 153 was the dominant congener in all samples. Total PCB concentrations were dominated by penta- and hexa-chlorinated biphenyls. The mean estimated TEQs were 42.8, 22.9, and 10.4 pg/g (ww) for loggerhead, green, and olive ridley, respectively, and more than 70% was accounted for by non-ortho PCBs. Western blots revealed the presence of hepatic microsomal proteins that cross-reacted with anti-CYP2K1 and anti-CYP3A27 antibodies but not with anti-CYP1A antibody. There were no significant differences in GST activities between species. Grouping congeners based on structure–activity relationships for CYP isoenzymes suggested limited activity of CYP1A contribution to PCB biotransformation in sea turtles. These results suggest potential accumulation of PCBs that are CYP1A substrates and provide evidence for biotransformation capacity, which differs from known animal models, highlighting the need for further studies in reptiles, particularly those threatened with extinction

    A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current chemical space of known small molecules is estimated to exceed 10<sup>60 </sup>structures. Though the largest physical compound repositories contain only a few tens of millions of unique compounds, virtual screening of databases of this size is still difficult. In recent years, the application of physicochemical descriptor-based profiling, such as Lipinski's rule-of-five for drug-likeness and Oprea's criteria of lead-likeness, as early stage filters in drug discovery has gained widespread acceptance. In the current study, we outline a kinase-likeness scoring function based on known kinase inhibitors.</p> <p>Results</p> <p>The method employs a collection of 22,615 known kinase inhibitors from the ChEMBL database. A kinase-likeness score is computed using statistical analysis of nine key physicochemical descriptors for these inhibitors. Based on this score, the kinase-likeness of four publicly and commercially available databases, i.e., National Cancer Institute database (NCI), the Natural Products database (NPD), the National Institute of Health's Molecular Libraries Small Molecule Repository (MLSMR), and the World Drug Index (WDI) database, is analyzed. Three of these databases, i.e., NCI, NPD, and MLSMR are frequently used in the virtual screening of kinase inhibitors, while the fourth WDI database is for comparison since it covers a wide range of known chemical space. Based on the kinase-likeness score, a kinase-focused library is also developed and tested against three different kinase targets selected from three different branches of the human kinome tree.</p> <p>Conclusions</p> <p>Our proposed methodology is one of the first that explores how the narrow chemical space of kinase inhibitors and its relevant physicochemical information can be utilized to build kinase-focused libraries and prioritize pre-existing compound databases for screening. We have shown that focused libraries generated by filtering compounds using the kinase-likeness score have, on average, better docking scores than an equivalent number of randomly selected compounds. Beyond library design, our findings also impact the broader efforts to identify kinase inhibitors by screening pre-existing compound libraries. Currently, the NCI library is the most commonly used database for screening kinase inhibitors. Our research suggests that other libraries, such as MLSMR, are more kinase-like and should be given priority in kinase screenings.</p

    Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    Get PDF
    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts

    Reduced costs with bisoprolol treatment for heart failure - An economic analysis of the second Cardiac Insufficiency Bisoprolol Study (CIBIS-II)

    Get PDF
    Background Beta-blockers, used as an adjunctive to diuretics, digoxin and angiotensin converting enzyme inhibitors, improve survival in chronic heart failure. We report a prospectively planned economic analysis of the cost of adjunctive beta-blocker therapy in the second Cardiac Insufficiency BIsoprolol Study (CIBIS II). Methods Resource utilization data (drug therapy, number of hospital admissions, length of hospital stay, ward type) were collected prospectively in all patients in CIBIS . These data were used to determine the additional direct costs incurred, and savings made, with bisoprolol therapy. As well as the cost of the drug, additional costs related to bisoprolol therapy were added to cover the supervision of treatment initiation and titration (four outpatient clinic/office visits). Per them (hospital bed day) costings were carried out for France, Germany and the U.K. Diagnosis related group costings were performed for France and the U.K. Our analyses took the perspective of a third party payer in France and Germany and the National Health Service in the U.K. Results Overall, fewer patients were hospitalized in the bisoprolol group, there were fewer hospital admissions perpatient hospitalized, fewer hospital admissions overall, fewer days spent in hospital and fewer days spent in the most expensive type of ward. As a consequence the cost of care in the bisoprolol group was 5-10% less in all three countries, in the per them analysis, even taking into account the cost of bisoprolol and the extra initiation/up-titration visits. The cost per patient treated in the placebo and bisoprolol groups was FF35 009 vs FF31 762 in France, DM11 563 vs DM10 784 in Germany and pound 4987 vs pound 4722 in the U.K. The diagnosis related group analysis gave similar results. Interpretation Not only did bisoprolol increase survival and reduce hospital admissions in CIBIS II, it also cut the cost of care in so doing. This `win-win' situation of positive health benefits associated with cost savings is Favourable from the point of view of both the patient and health care systems. These findings add further support for the use of beta-blockers in chronic heart failure

    New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children

    Get PDF
    Hyponatremia is the most common electrolyte abnormality encountered in children. In the past decade, new advances have been made in understanding the pathogenesis of hyponatremic encephalopathy and in its prevention and treatment. Recent data have determined that hyponatremia is a more serious condition than previously believed. It is a major comorbidity factor for a variety of illnesses, and subtle neurological findings are common. It has now become apparent that the majority of hospital-acquired hyponatremia in children is iatrogenic and due in large part to the administration of hypotonic fluids to patients with elevated arginine vasopressin levels. Recent prospective studies have demonstrated that administration of 0.9% sodium chloride in maintenance fluids can prevent the development of hyponatremia. Risk factors, such as hypoxia and central nervous system (CNS) involvement, have been identified for the development of hyponatremic encephalopathy, which can lead to neurologic injury at mildly hyponatremic values. It has also become apparent that both children and adult patients are dying from symptomatic hyponatremia due to inadequate therapy. We have proposed the use of intermittent intravenous bolus therapy with 3% sodium chloride, 2 cc/kg with a maximum of 100 cc, to rapidly reverse CNS symptoms and at the same time avoid the possibility of overcorrection of hyponatremia. In this review, we discuss how to recognize patients at risk for inadvertent overcorrection of hyponatremia and what measures should taken to prevent this, including the judicious use of 1-desamino-8d-arginine vasopressin (dDAVP)
    corecore