312 research outputs found

    Small-Scale Fluidized Bed Bioreactor for Long-Term Dynamic Culture of 3D Cell Constructs and in vitro Testing

    Get PDF
    With the increasing interest in three-dimensional (3D) cell constructs that better represent native tissues, comes the need to also invest in devices, i.e., bioreactors, that provide a controlled dynamic environment similar to the perfusion mechanism observed in vivo. Here a laboratory-scale fluidized bed bioreactor (sFBB) was designed for hydrogel (i.e., alginate) encapsulated cells to generate a dynamic culture system that produced a homogenous milieu and host substantial biomass for long-term evolution of tissue-like structures and “per cell” performance analysis. The bioreactor design, conceptualized through scale-down empirical similarity rules, was initially validated through computational fluid dynamics analysis for the distributor capacity of homogenously dispersing the flow with an average fluid velocity of 4.596 × 10–4 m/s. Experimental tests then demonstrated a consistent fluidization of hydrogel spheres, while maintaining shape and integrity (606.9 ± 99.3 μm diameter and 0.96 shape factor). It also induced mass transfer in and out of the hydrogel at a faster rate than static conditions. Finally, the sFBB sustained culture of alginate encapsulated hepatoblastoma cells for 12 days promoting proliferation into highly viable (>97%) cell spheroids at a high final density of 27.3 ± 0.78 million cells/mL beads. This was reproducible across multiple units set up in parallel and operating simultaneously. The sFBB prototype constitutes a simple and robust tool to generate 3D cell constructs, expandable into a multi-unit setup for simultaneous observations and for future development and biological evaluation of in vitro tissue models and their responses to different agents, increasing the complexity and speed of R&D processes

    Applications and optimization of cryopreservation technologies to cellular therapeutics

    Get PDF
    Delivery of cell therapies often requires the ability to hold products in readiness whilst logistical, regulatory and potency considerations are dealt with and recorded. This requires reversibly stopping biological time, a process which is often achieved by cryopreservation. However, cryopreservation itself poses many biological and biophysical challenges to living cells that need to be understood in order to apply the low temperature technologies to their best advantage. This review sets out the history of applied cryopreservation, our current understanding of the various processes involved in storage at cryogenic temperatures, and challenges for robust and reliable uses of cryopreservation within the cell therapy arena

    Striatal input from the ventrobasal complex of the rat thalamus

    Get PDF
    We have analyzed whether caudal regions of the caudate putamen receive direct projections from thalamic sensory relay nuclei such as the ventrobasal complex. To this aim, the delivery of the retrograde neuroanatomical tracer Fluoro-Gold into the caudal caudate putamen resulted in the appearance of retrogradely labeled neurons in the ventral posteromedial and ventral posterolateral thalamic nuclei. These projections were further confirmed with injections of the anterograde tracers biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin into these thalamic nuclei, by showing the existence of axonal terminal fields located in the caudal striatum. These results support the existence of direct projections linking the thalamic ventrobasal complex and the caudal striatum in the rat, probably via collateralization of thalamocortical axons when passing through the caudate putamen, and therefore supporting the putative involvement of the caudal striatum in sensory-related functions

    Decisional tool for cost of goods analysis of bioartificial liver devices for routine clinical use

    Get PDF
    BACKGROUND AIMS: Bioartificial liver devices (BALs) are categorized as advanced therapy medicinal products (ATMPs) with the potential to provide temporary liver support for liver failure patients. However, to meet commercial demands, next-generation BAL manufacturing processes need to be designed that are scalable and financially feasible. The authors describe the development and application of a process economics decisional tool to determine the cost of goods (COG) of alternative BAL process flowsheets across a range of industrial scales. METHODS: The decisional tool comprised an information database linked to a process economics engine, with equipment sizing, resource consumption, capital investment and COG calculations for the whole bioprocess, from cell expansion and encapsulation to fluidized bed bioreactor (FBB) culture to cryopreservation and cryorecovery. Four different flowsheet configurations were evaluated across demands, with cell factories or microcarriers in suspension culture for the cell expansion step and single-use or stainless steel technology for the FBB culture step. RESULTS: The tool outputs demonstrated that the lowest COG was achieved with microcarriers and stainless steel technology independent of the annual demand (1500-30 000 BALs/year). The analysis identified the key cost drivers were parameters impacting the medium volume and cost. CONCLUSIONS: The tool outputs can be used to identify cost-effective and scalable bioprocesses early in the development process and minimize the risk of failing to meet commercial demands due to technology choices. The tool predictions serve as a useful benchmark for manufacturing ATMPs

    Two-pore channel 2 (TPC2) modulates store-operated Ca2+ entry

    Get PDF
    AbstractTwo-pore channels (TPCs) are NAADP-sensitive receptor channels that conduct Ca2+ efflux from the intracellular stores. Discharge of the internal Ca2+ pools results in the activation of store-operated Ca2+ entry (SOCE); however, the role of TPCs in the modulation of SOCE remains unexplored. Mammalian cells express three TPCs: TPC1, TPC2 and TPC3, a pseudogene in humans. Here we report that MEG01 and HEK293 cells endogenously express TPC1 and TPC2. Silencing TPC2 expression results in attenuation of the rate and extent of thapsigargin (TG)-evoked SOCE both in MEG01 and HEK293 cells, without having any effect on the ability of cells to accumulate Ca2+ into the TG-sensitive stores. Similarly, silencing of native TPC2 expression reduced thrombin-induced Ca2+ entry in MEG01 cells. In contrast, silencing of TPC1 expression was without effect either on TG or thrombin-stimulated Ca2+ entry both in MEG01 and HEK293 cells. Biotinylation analysis revealed that TPC1 and TPC2 are expressed in internal membranes. Finally, co-immunoprecipitation experiments indicated that endogenously expressed TPC2, but not TPC1, associates with STIM1 and Orai1, but not with TRPC1, in MEG01 cells with depleted intracellular Ca2+ stores, but not in resting cells. These results provide strong evidence for the modulation of SOCE by TPC2 involving de novo association between TPC2 and STIM1, as well as Orai1, in human cells
    • …
    corecore