49 research outputs found

    Human pluripotent stem cell-derived striatal interneurons: differentiation and maturation in vitro and in the rat brain

    Get PDF
    Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine

    A directly comparative two-gate case–control diagnostic accuracy study of the pure tone screen and HearCheck screener tests for identifying hearing impairment in school children

    Get PDF
    Objectives: This study directly compared the accuracy of two audiometry-based tests for screening school children for hearing impairment: the currently used test, pure tone screen and a device newly applied to children, HearCheck Screener. Design: Two-gate case–control diagnostic test accuracy study. Setting and participants: Hearing impaired children (‘intended cases’) aged 4–6 years were recruited between February 2013 and August 2014 from collaborating audiology services. Children with no previously identified impairment (‘intended controls’) were recruited from Foundation and Year 1 of schools between February 2013 and June 2014 in central England. The reference standard was pure tone audiometry. Tests were administered at Nottingham Hearing Biomedical Research Unit or, for some intended cases only, in the participant’s home. Main outcome measures: Sensitivity and specificity of the pure tone screen and HearCheck tests based on pure tone audiometry result as reference standard. Results: 315 children (630 ears) were recruited; 75 from audiology services and 240 from schools. Full test and reference standard data were obtained for 600 ears; 155 ears were classified as truly impaired and 445 as truly hearing based on the pure tone audiometry assessment. Sensitivity was estimated to be 94.2% (95% CI 89.0% to 97.0%) for pure tone screen and 89.0% (95% CI 82.9% to 93.1%) for HearCheck (difference=5.2% favouring pure tone screen; 95% CI 0.2% to 10.1%; p=0.02). Estimates for specificity were 82.2% (95% CI 77.7% to 86.0%) for pure tone screen and 86.5% (95% CI 82.5% to 89.8%) for HearCheck (difference=4.3% favouring HearCheck; 95% CI0.4% to 8.2%; p=0.02). Conclusion: Pure tone screen was better than HearCheck with respect to sensitivity but inferior with respect to specificity. As avoiding missed cases is arguably of greater importance for school entry screening, pure tone screen is probably preferable in this context

    Viral mimic poly-(I:C) attenuates airway epithelial T cell suppressive capacity; implications for asthma

    Get PDF
    In allergen-sensitised asthmatic individuals, allergen-specific type-2 T-helper cells proliferate and secrete type-2 cytokines (e.g. interleukin (IL)-4, -5 and -13), driving the airway inflammatory response that gives rise to the clinical symptoms of asthma. Both early-life sensitisation to aeroallergens and lower respiratory viral infections are important environmental risk factors for developing asthma. Additionally, respiratory viral infections are the most common trigger for asthma exacerbations. Of interest, many asthma susceptibility genes are expressed in the airway epithelium [1], which forms the first continuous line of defence against inhaled environmental insults, including viruses and aeroallergens. Impaired immune regulation and failure to maintain tolerance to allergens is thought to contribute to allergic sensitisation. Asthma epithelium may be deficient in its innate immune defence against viral infections, resulting in increased viral replication upon rhinovirus infection compared to nonasthma-derived epithelial cultures [2]. Furthermore, there is evidence for loss of the mucosal immune barrier in asthma, with disruption of epithelial integrity [1, 3]. This may lead not only to increased permeability, but also to the release of pro-inflammatory mediators, specifically of cytokines that drive type-2 responses [3, 4]. We recently observed that the ability of allergens to disrupt epithelial barrier function is related to the development of type-2-mediated inflammation in asthma [5, 6]. Furthermore, we demonstrated that healthy murine lung epithelium is a potent inhibitor of T-cell proliferation and that this inhibition is lost upon viral infection [7]. It is unknown if this immune regulatory effect is displayed by human epithelium and is dysregulated in asthma. We hypothesise that changes in this regulatory effect translate into aberrant regulation of T-cell responses in asthma. We studied the epithelial regulation of T-cell proliferation and cytokine responses upon epithelial stimulation with a viral mimic, using co-culture of human T-cells and primary bronchial epithelial cells (PBECs) from healthy controls and asthma patients

    HpARI protein secreted by a helminth parasite suppresses interleukin-33

    Get PDF
    Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. Osbourn et al identified HpARI, a protein secreted by a helminth parasite that is capable of suppressing allergic responses. HpARI binds to IL-33 (a critical inducer of allergy) and nuclear DNA, preventing the release of IL-33 from necrotic epithelial cells

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification of a Lacosamide Binding Protein Using an Affinity Bait and Chemical Reporter Strategy: 14-3-3 ζ

    Get PDF
    We have advanced a useful strategy to elucidate binding partners of ligands (drugs) with modest binding affinity. Key to this strategy is attaching to the ligand an affinity bait (AB) and a chemical reporter (CR) group, where the AB irreversibly attaches the ligand to the receptor upon binding and the CR group is employed for receptor detection and isolation. We have tested this AB&CR strategy using lacosamide ((R)-1), a low-molecular-weight antiepileptic drug. We demonstrate that using a (R)-lacosamide AB&CR agent ((R)-2) 14-3-3 ζ in rodent brain soluble lysates is preferentially adducted, adduction is stereospecific with respect to the AB&CR agent, and adduction depends upon the presence of endogenous levels of the small molecule metabolite xanthine. Substitution of lacosamide AB agent ((R)- 5) for (R)-2 led to the identification of the 14-3-3 ζ adduction site (K120) by mass spectrometry. Competition experiments using increasing amounts of (R)-1 in the presence of (R)-2 demonstrated that (R)-1 binds at or near the (R)-2 modification site on 14-3-3 ζ. Structure-activity studies of xanthine derivatives provided information concerning the likely binding interaction between this metabolite and recombinant 14-3-3 ζ. Documentation of the 14-3-3 ζ-xanthine interaction was obtained with isothermal calorimetry using xanthine and the xanthine analogue 1,7-dimethylxanthine

    Microtrench and tumour proliferation assay

    No full text
    There is provided a cell culture microtrench being defined on or in a surface of a substrate, wherein the ratio of the width of the microtrench to the maximum length of the short axis of a cell type of interest is about 6 or preferably less, the length of the short axis of the cell type being measured when a cell is in detached or suspended form. There is also provided an array comprising such a microtrench and uses of such microtrenches, including cell-based assays
    corecore