382 research outputs found

    Broadband Geodesic Pulses for Three Spin Systems: Time-Optimal Realization of Effective Trilinear Coupling Terms and Indirect SWAP Gates

    Full text link
    Broadband implementations of time-optimal geodesic pulse elements are introduced for the efficient creation of effective trilinear coupling terms for spin systems consisting of three weakly coupled spins 1/2. Based on these pulse elements, the time-optimal implementation of indirect SWAP operations is demonstrated experimentally. The duration of indirect SWAP gates based on broadband geodesic sequence is reduced by 42.3% compared to conventional approaches.Comment: 22 pages, incl. 8 figure

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing

    Multiple-spin coherence transfer in linear Ising spin chains and beyond: numerically-optimized pulses and experiments

    Full text link
    We study multiple-spin coherence transfers in linear Ising spin chains with nearest neighbor couplings. These constitute a model for efficient information transfers in future quantum computing devices and for many multi-dimensional experiments for the assignment of complex spectra in nuclear magnetic resonance spectroscopy. We complement prior analytic techniques for multiple-spin coherence transfers with a systematic numerical study where we obtain strong evidence that a certain analytically-motivated family of restricted controls is sufficient for time-optimality. In the case of a linear three-spin system, additional evidence suggests that prior analytic pulse sequences using this family of restricted controls are time-optimal even for arbitrary local controls. In addition, we compare the pulse sequences for linear Ising spin chains to pulse sequences for more realistic spin systems with additional long-range couplings between non-adjacent spins. We experimentally implement the derived pulse sequences in three and four spin systems and demonstrate that they are applicable in realistic settings under relaxation and experimental imperfections-in particular-by deriving broadband pulse sequences which are robust with respect to frequency offsets.Comment: 11 page

    Thermal Equilibrium as an Initial State for Quantum Computation by NMR

    Full text link
    We present a method of using a nuclear magnetic resonance computer to solve the Deutsch-Jozsa problem in which: (1) the number of molecules in the NMR sample is irrelevant to the number of qubits available to an NMR quantum computer, and (2) the initial state is chosen to be the state of thermal equilibrium, thereby avoiding the preparation of pseudopure states and the resulting exponential loss of signal as the number of qubits increases. The algorithm is described along with its experimental implementation using four active qubits. As expected, measured spectra demonstrate a clear distinction between constant and balanced functions.Comment: including 4 figure

    Quantum pattern recognition with liquid-state nuclear magnetic resonance

    Full text link
    A novel quantum pattern recognition scheme is presented, which combines the idea of a classic Hopfield neural network with adiabatic quantum computation. Both the input and the memorized patterns are represented by means of the problem Hamiltonian. In contrast to classic neural networks, the algorithm can return a quantum superposition of multiple recognized patterns. A proof of principle for the algorithm for two qubits is provided using a liquid state NMR quantum computer.Comment: updated version, Journal-ref adde

    Time Optimal Control in Spin Systems

    Get PDF
    In this paper, we study the design of pulse sequences for NMR spectroscopy as a problem of time optimal control of the unitary propagator. Radio frequency pulses are used in coherent spectroscopy to implement a unitary transfer of state. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formulation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse design are constantly arising. Moreover, the general proofs are no more difficult than the specific problems of current interest. From a general control theory perspective, the problems we want to study have the following character. Suppose we are given a controllable right invariant system on a compact Lie group, what is the minimum time required to steer the system from some initial point to a specified final point? In NMR spectroscopy and quantum computing, this translates to, what is the minimum time required to produce a unitary propagator? We also give an analytical characterization of maximum achievable transfer in a given time for the two spin system.Comment: 20 Pages, 3 figure

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure

    Heteronuclear Decoupling by Multiple Rotating Frame Technique

    Full text link
    The paper describes the multiple rotating frame technique for designing modulated rf-fields, that perform broadband heteronuclear decoupling in solution NMR spectroscopy. The decoupling is understood by performing a sequence of coordinate transformations, each of which demodulates a component of the Rf-field to a static component, that progressively averages the chemical shift and dipolar interaction. We show that by increasing the number of modulations in the decoupling field, the ratio of dispersion in the chemical shift to the strength of the rf-field is successively reduced in progressive frames. The known decoupling methods like continuous wave decoupling, TPPM etc, are special cases of this method and their performance improves by adding additional modulations in the decoupling field. The technique is also expected to find use in designing decoupling pulse sequences in Solid State NMR spectroscopy and design of various excitation, inversion and mixing sequences.Comment: 18 pages , 5 figure

    The Significance of the CC-Numerical Range and the Local CC-Numerical Range in Quantum Control and Quantum Information

    Full text link
    This paper shows how C-numerical-range related new strucures may arise from practical problems in quantum control--and vice versa, how an understanding of these structures helps to tackle hot topics in quantum information. We start out with an overview on the role of C-numerical ranges in current research problems in quantum theory: the quantum mechanical task of maximising the projection of a point on the unitary orbit of an initial state onto a target state C relates to the C-numerical radius of A via maximising the trace function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii) in restricting the dynamics to {\em local} operations on each qubit, i.e. to the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2). Interestingly, the latter then leads to a novel entity, the {\em local} C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither star-shaped nor simply connected in contrast to the conventional C-numerical range. This is shown in the accompanying paper (math-ph/0702005). We present novel applications of the C-numerical range in quantum control assisted by gradient flows on the local unitary group: (1) they serve as powerful tools for deciding whether a quantum interaction can be inverted in time (in a sense generalising Hahn's famous spin echo); (2) they allow for optimising witnesses of quantum entanglement. We conclude by relating the relative C-numerical range to problems of constrained quantum optimisation, for which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200

    Application of Optimal Control to CPMG Refocusing Pulse Design

    Full text link
    We apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence that are robust over a wide range of B0 and B1 offsets. We also introduce a model, based on recent progress in the analysis of unitary dynamics in the field of quantum information processing (QIP), that describes the multiple refocusing dynamics of the CPMG sequence as a dephasing Pauli channel. This model provides a compact characterization of the consequences and severity of residual pulse errors. We illustrate the methods by considering a specific example of designing and analyzing broadband OCT refocusing pulses of length 10 t180 that are constrained by the maximum instantaneous pulse power. We show that with this refocusing pulse, the CPMG sequence can refocus over 98% of magnetization for resonance offsets up to 3.2 times the maximum RF amplitude, even in the presence of +/- 10% RF inhomogeneity.Comment: 23 pages, 10 figures; Revised and reformatted version with new title and significant changes to Introduction and Conclusions section
    corecore