Experiments in coherent nuclear and electron magnetic resonance, and optical
spectroscopy correspond to control of quantum mechanical ensembles, guiding
them from initial to final target states by unitary transformations. The
control inputs (pulse sequences) that accomplish these unitary transformations
should take as little time as possible so as to minimize the effects of
relaxation and decoherence and to optimize the sensitivity of the experiments.
Here we give efficient syntheses of various unitary transformations on Ising
spin chains of arbitrary length. The efficient realization of the unitary
transformations presented here is obtained by computing geodesics on a sphere
under a special metric. We show that contrary to the conventional belief, it is
possible to propagate a spin order along an Ising spin chain with coupling
strength J (in units of Hz), significantly faster than 1/(2J) per step. The
methods presented here are expected to be useful for immediate and future
applications involving control of spin dynamics in coherent spectroscopy and
quantum information processing