12,830 research outputs found

    Self-diffusion in sheared colloidal suspensions: violation of fluctuation-dissipation relation

    Full text link
    Using memory-function formalism we show that in sheared colloidal suspensions the fluctuation-dissipation theorem for self-diffusion, i.e. Einstein's relation between self-diffusion and mobility tensors, is violated and propose a new way to measure this violation in Brownian Dynamics simulations. We derive mode-coupling expressions for the tagged particle friction tensor and for an effective, shear-rate dependent temperature

    Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization

    Get PDF
    •Heteromorphic flower development in Primula is controlled by the S locus. The S locus genes, which control anther position, pistil length and pollen size in pin and thrum flowers, have not yet been characterized. We have integrated S-linked genes, marker sequences and mutant phenotypes to create a map of the P. vulgaris S locus region that will facilitate the identification of key S locus genes. We have generated, sequenced and annotated BAC sequences spanning the S locus, and identified its chromosomal location. •We have employed a combination of classical genetics and three-point crosses with molecular genetic analysis of recombinants to generate the map. We have characterized this region by Illumina sequencing and bioinformatic analysis, together with chromosome in situ hybridization. •We present an integrated genetic and physical map across the P. vulgaris S locus flanked by phenotypic and DNA sequence markers. BAC contigs encompass a 1.5-Mb genomic region with 1 Mb of sequence containing 82 S-linked genes anchored to overlapping BACs. The S locus is located close to the centromere of the largest metacentric chromosome pair. •These data will facilitate the identification of the genes that orchestrate heterostyly in Primula and enable evolutionary analyses of the S locus

    Microscopic approach to pion-nucleus dynamics

    Get PDF
    Elastic scattering of pions from finite nuclei is investigated utilizing a contemporary, momentum--space first--order optical potential combined with microscopic estimates of second--order corrections. The calculation of the first--order potential includes:\ \ (1)~full Fermi--averaging integration including both the delta propagation and the intrinsic nonlocalities in the π\pi-NN amplitude, (2)~fully covariant kinematics, (3)~use of invariant amplitudes which do not contain kinematic singularities, and (4)~a finite--range off--shell pion--nucleon model which contains the nucleon pole term. The effect of the delta--nucleus interaction is included via the mean spectral--energy approximation. It is demonstrated that this produces a convergent perturbation theory in which the Pauli corrections (here treated as a second--order term) cancel remarkably against the pion true absorption terms. Parameter--free results, including the delta--nucleus shell--model potential, Pauli corrections, pion true absorption, and short--range correlations are presented. (2 figures available from authors)Comment: 13 page

    Granular gases under extreme driving

    Full text link
    We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.Comment: 6 pages, 7 figures; new version contains 2 new figures and text describing cascade

    Supreme Court Amicus Brief Regarding Wyeth v. Diana Levine

    Get PDF
    Prominent in arguments opposing preemption of state tort law liability for alleged inadequacies in prescription drug labeling is the argument that such liability can complement FDA regulation by improving on a regulatory scheme that fails to provide adequate deterrence against the marketing of unsafe or inadequately labeled drugs. The premise of this argument is faulty. Fundamental principles of economics and numerous studies of FDA drug regulation reveal that FDA in fact errs on the side of overregulation of prescription drugs. Product liability litigation focused solely on one side of the prescription drug public health equation leads to further distortions of the drug approval and labeling process and exacerbates FDA's inherent overly cautious approach. Preemption of state tort law where it conflicts with FDA requirements will minimize these distortions and thereby maximize public health.Health and Safety, Other Topics

    Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels

    Get PDF
    Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of founding individuals and recombinations of founding haplotypes occurring in the population. These limitations, however, become advantageous when attempting to impute unobserved genotypes using within family segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously been obtained on experimental resource populations to be further mined for QTL identification. In this study we used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation accuracy under several genotyping scenarios. Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped with a 9K panel, IA drops to 0.90. Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to re-genotype existing populations at a fraction of the cost.Fil: Gualdron Duarte, Jose Luis. Michigan State University; Estados Unidos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bates, Ronald O.. Michigan State University; Estados UnidosFil: Ernst, Catherine W.. Michigan State University; Estados UnidosFil: Raney, Nancy E.. Michigan State University; Estados UnidosFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Steibel, Juan P.. Michigan State University; Estados Unido
    corecore