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Abstract

Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A
limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of
founding individuals and recombinations of founding haplotypes occurring in the population. These limitations,
however, become advantageous when attempting to impute unobserved genotypes using within family
segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding
individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined
meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be
achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously
been obtained on experimental resource populations to be further mined for QTL identification. In this study we
used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation
accuracy under several genotyping scenarios.

Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar
imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded
imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is
used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should
be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped
with a 9K panel, IA drops to 0.90.

Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to
re-genotype existing populations at a fraction of the cost.
Background
The search for regions in the genome containing genetic
variants that affect production traits requires experimental
populations to identify the segregating QTL within and
between parental populations [1]. The F2 design is com-
monly used to map QTL segregating in divergent parental
lines [2,3]. To produce reliable analyses of association or
genetic evaluations using genomic information, a great
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number of individuals with phenotypes and high density
(HD) genotypes are required [4]. However, HD genotypes
for large numbers of animals are expensive to obtain [5,6].
A way of reducing cost is to genotype individuals from
base generations (parents) in HD, and their more numer-
ous descendants at low density (LowD) [6,7]. Then, using
selected SNP from the HD panel, called tagSNP, the non-
typed SNP are imputed with high accuracy [7]. Imputing
HD genotypes of progeny from LowD genotypes, condi-
tional on grandparental and parental HD genotypes, may
result in higher imputation accuracies than those obtained
using a reference panel from unrelated individuals [7-9].
This is because HD genotypes from base generations can
be traced within family by means of co-segregation or
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descendant probabilities [6] while searching for the phase
of parental alleles [7].
Most studies on genotype imputation of livestock spe-

cies have been performed with purebreds [4,7,9-13], and
genotype imputation from crossbreds has been largely ab-
sent. With regard to agricultural plant species, studies on
genotype imputation have used inbred lines [8], recombin-
ant inbred lines (RILs) in Nested Association Mapping
(NAM) designs [14,15], and Multiparent Advanced Gen-
eration Inter-Cross studies (MAGIC) [16]. Genotype im-
putation has also been employed in human studies of
genome-linkage analysis for test association of candidate
transcriptional regulators with gene expression [17]; and
also in a model organism in biomedical research such as
the mouse, imputation of genotypes from crosses of in-
bred lines was used to identify candidates genes for com-
plex disease [18,19].
Imputing genotypes in humans, plants, livestock, or

model organisms, is similar in the sense that a small num-
ber of founding individuals can be genotyped at high
density, and the bulk of the mapping population can be
genotyped at low density using linkage information. In this
paper we focus on imputing F2 individuals from a three
generation (F0, F1 and F2) population of Duroc × Pietrain
crossbred pigs. The F0 and F1 animals were genotyped in
HD (60K). The F0 populations used to map QTL in pigs
are typically composed of a small number of animals (in
our case, 4 males and 15 females) [1,20-22]. As it is
expected that few recombinations occur in the first gener-
ations, these populations have low resolution to map QTL
[23]. However, and for the same reason, there is a poten-
tial for attaining high accuracy of imputation. The latter
effect can be taken to advantage for imputing HD geno-
types from inexpensive LowD F2 genotypes, which subse-
quently allows combining existing data from experimental
populations in a meta-analysis for association. There are
several reasons for this strategy to be attractive. First, sev-
eral of these populations have been recently created
[21,22,24,25] and DNA from these animals is available.
Second, extensive datasets of phenotypes have been re-
corded for these populations including for traits that are
expensive or difficult to measure, such as the content of
intramuscular fat and composition of fatty acids [25], age
at puberty in gilts [22], and meat tenderness [26]. Finally,
these populations are generally developed from breeds
that are divergent for some traits of interest such as fat/
lean content, meat quality or reproductive efficiency, take
for example: Duroc × Pietrain [1,21], Duroc × Landrace
[24], Duroc × Large-White [25], White-Duroc × Erhualian
[22], Meishan ×Duroc [27], Berkshire × Duroc [20].
Therefore, it follows that imputation of F2 LowD to HD

genotypes with high accuracy would be useful and
convenient, providing a cost effective strategy as a first
step for association analyses or meta-analyses. Different
methods have been employed to select tagSNP in LowD
panels. Two of them are: 1) imposing restrictions on the
minimum value of linkage disequilibrium (LD) or rt

2 be-
tween markers [28], 2) selection of tagSNP that are evenly
spaced using the physical distance between markers
[4,11,12]. In addition, commercial chips are also available
with medium density segregating SNP selected from sev-
eral populations, as for example for bovine [29] and pig
[10]. A question arises of how many SNP are needed to at-
tain a high accuracy of imputation for a given F2 popula-
tion. Another question is whether a specific chip has to be
custom designed, or whether current commercially avail-
able chips can be used. Finally, it is important to deter-
mine whether both the F0 and F1 have to be genotyped at
HD, or if just genotyping the F0 is adequate to obtain a
high accuracy of imputation in the F2.
The goal of this research was to estimate the accuracy of

imputation at HD (60K), from LowD F2 genotypes for
a Duroc × Pietrain population, using different genoty-
ping schemes. The strategies were evaluated by means of
Monte Carlo simulation, conditional on the genotypes
from animals in the first two generations (F0 and F1). In
doing so, two methods of tagSNP selection were consid-
ered and their results were compared to those obtained
from a commercial panel chip (9K). In addition to simula-
tions, accuracy of imputation was evaluated using experi-
mental data, taking advantage of a reduced number of F2
animals that were genotyped at HD.

Results
Linkage disequilibrium and selection of tagSNP
Table 1 displays the number of tagSNP selected with dif-
ferent values of LD in an intermediate size chromosome
(SSC12), reflected by the measure rt

2. As the value of rt
2 in-

creases, more tagSNP are selected and IA increases. As an
example, when rt

2 = 0.2, 79 tagSNP were selected at an
average distance of 0.79 Mb and at an accuracy of 0.970.
On the other hand for rt

2 = 0.5, 399 tagSNP were selected,
positioned at an average distance of 0.16 Mb with IA being
equal to 0.982 (Table 1).

Evenly spaced SNP
The IA using tagSNP selected using either LD information
or evenly spaced SNP were similar. For example, the IA of
non-typed SNP on SSC12 were 0.973 and 0.970, respect-
ively, for 80 evenly spaced SNP as compared with 79
tagSNP selected with rt

2 = 0.2 (Figure 1). Results for other
densities of tagSNP were similar (Figure 1). Moreover,
evenly spaced tagSNP sets of comparable density across
chromosomes yielded similar accuracies. Thus, for ex-
ample an average inter–marker distance of 2.1 Mb, 140
tagSNP on chromosome 1 and 30 tagSNP on chromo-
some 12 produced IA of 0.969 and 0.968, respectively
(Figure 2). In summary, a minimum of 1,200 evenly



Table 1 Accuracy of imputation using tagSNP selected for different values of rt
2 on chromosome 12

rt
2 Number of tagSNP Number of SNP genomewide Average distance between SNP (Mb) Imputation accuracy (IA)

0.1 33 1295 1.86 0.960

0.2 79 3100 0.79 0.970

0.3 158 6199 0.40 0.976

0.4 266 10436 0.24 0.980

0.5 399 15654 0.16 0.982

rt
2 = Threshold of LD in statistical selection, Number of tagSNP = Number of SNP selected for a particular rt

2, Number of SNP Genomewide = The equivalent number
of SNP that are needed genome-wide to keep the same average inter-marker distance. Average distance between SNP (Mb) = Average distance between tagSNP
selected, Imputation accuracy (IA) = Imputation accuracy of non-tagSNP. Results using simulated data.
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spaced tagSNP across the genome (average distance = 2.1
Mb) are needed in this F2 population to attain imputation
accuracy IA ≥ 0.97 when the F0 and F1 are genotyped with
a SNP60 chip.

Imputed genotypes in experimental F2 animals

9K commercial chip
The values of IA were calculated for two scenarios and for
each chromosome, using a 9K SNP list that was developed
for producing a commercial LowD panel (GeneSeek, Inc.,
Lincoln, NE, USA; described in Badke et al. [10]).
Imputation accuracies IA were 0.90 and 0.99 when the

F1 was genotyped at low or high density, respectively
(Figure 3). In the latter case, although the accuracy was
high in all chromosomes (0.99), SNP in some regions were
imputed with lower accuracy (Figure 4). High IA in the F2
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Figure 1 Accuracy of imputation (IA) using tagSNP selected using LD
number of tagSNP selected: evenly spaced tagSNP panels (green dots), tag
data from chromosome 12.
were obtained across all SNP when the F1 was genotyped
at HD (Figure 4a,b). However, when the F1 was genotyped
at LowD, IA in F2 individuals decreased along the whole
chromosome (Figure 4c,d). A logical question to consider
is the following: how much accuracy is gained when in-
cluding pedigree information, when compared with the
use of population-wise LD as the unique source of infor-
mation? To answer this, the imputation was performed
again using as reference panel the genotypes of F0 and F1
animals and the F2 at LowD, but without specifying the
pedigree of the F2s. In other words, the F2 animals were
assumed unrelated and their parents were unknown. For
chromosome 1 the results are displayed in Figure 5. No-
tice that the average IA in the F2 was equal to 0.90. There-
fore, the IA was lower than when the information on
relationships was used (0.99, Figure 4a,b). This indicates
that the inclusion of HD genotypes from related animals
200 300 400
r of tagSNP

information or evenly spaced. Imputation accuracy as a function of
SNP-LD panels (red squares). Results shown correspond to simulated
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Figure 2 Accuracy of imputation (IA) as a function of average tagSNP distance for evenly spaced panels on chromosomes 1 and 12.
Imputation accuracy as a function of the average distance between evenly spaced tagSNP in megabases (Mb) for seven SNP panels on simulated
data from chromosome 1 (red squares) and chromosome 12 (blue dots).

Figure 3 Accuracy of imputation (IA) for SNP on 60K chip using the 9K panel as tagSNP. Average accuracy of imputation for each
chromosome using experimental data: Blue bars correspond to the case of F0 at high density (HD), F1 and F2 at low density (LowD). Red bars
correspond to gain in accuracy of imputation when the F1 is genotyped at HD.
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Figure 4 Accuracy of imputation (IA) across chromosomes 1 and 12 under two genotyping scenarios. Generation F0 and F1 at high
density, F2 at low density: chromosome 1 (a), chromosome 12 (b). Generation F0 at high density, F1 and F2 at low density: chromosome 1 (c),
chromosome 12 (d). The blue line displays a local regression fit of the data. All results were obtained using the experimental data.
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and explicitly specifying paternities greatly increases ac-
curacy of imputation.
The IA from both genotyping scenarios (Figures 3 and

4) reflect an average drop of 0.1 when the F1 is genotyped
at LowD. To gain further insight, the simulated haplo-
types of two families were used to calculate accuracy of
imputation in each scenario. When the F1 is genotyped
at LowD, the results showed that the phase error among
the SNP that are not tagSNP increased. This loss of ac-
curacy in determining the SNP phase can be traced back
to the F0 generation in which the non-tagSNP are also
phased with low accuracy. Furthermore, the proportion
of SNP with uncertain phase in the F1 genotyped at HD
was 4%, and the ensuing accuracy of haplotyping was
0.97. However, when the F1 was genotyped at LowD the
proportion of SNP with uncertain phase increased to
30%, and the corresponding accuracy of haplotyping for
the non-tagSNP of F1 genotypes dropped to 0.85. In a
further analysis with the F1 generation genotyped at HD
and used as a reference population (ignoring F0 ge-
notypes), this resulted in 43% of non-tagSNP with uncer-
tain phase in the F1 at HD, and the haplotyping accuracy
was even lower (0.78). These results suggest that, in
order to have a high accuracy of imputation for non-
tagSNP in F2 genotypes, certainty of the phase in the F1
genotypes is required. Such accurately estimated phase is
guaranteed when two generations of HD genotypes (F0, F1)
are available.
A closer look at Figures 4 and 5 indicates that the pos-

ition of the SNP had some effect over IA. Therefore, we
investigated the relationship between single SNP imput-
ation accuracy and each SNP’s MAF, distance to the
nearest tagSNP, and allelic frequency difference between
founding breeds.
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Figure 5 Accuracy of imputation (IA) per SNP ignoring
pedigree relationship on chromosome 1. Imputation accuracy of
experimental data as a function of the chromosomal positions of
SNP using information on LD only. Generation F0 and F1 genotyped
at high density and F2 genotyped at low density with the
relationships between F0, F1 and F2 omitted.
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Minor allele frequency (MAF)
The measure of accuracy based on counting the number
of alleles correctly imputed is sensitive to the allelic fre-
quency [8,12,30]. In the current study, the square of the
correlation (R2) between observed and imputed genotypes
was used as a robust measure of accuracy of imputation.
It is worth noting that the scale of this measure is some-
what different from the one derived from AI (Table 2).

MAF using the 9K panel in the F2
Figure 6 shows that the MAF of the imputed SNP was not
related to R2 in these data. Notice also that alleles with ex-
treme frequencies (MAF < 0.1) can be imputed with ac-
curacy similar to those SNP at intermediate frequencies
(MAF > 0.3).

Distance to the closest tagSNP
No differences in R2 were found for the range of distances
between non-tagSNP and tagSNP observed (average was
equal to 0.936 Mb). Therefore, for an average density be-
tween tagSNP of 0.26 Mb, R2 is similar for a SNP that is
in the middle of the interval than for a SNP that is close
Table 2 Imputation accuracy of SNP on chromosome 12 meas

Scenario Genotype design

Grandparents Parents

1 HD HD

2 HD LowD

Comparison of two measures of accuracy of imputation calculated using experimen
density (HD), F2 at low density (LowD), 2) F0 at HD, F1 and F2 at LowD.
to the tagSNP (Figure 7). This observation suggests that
the density of tagSNP was enough to attain a reasonably
equal R2 for all SNP within the interval.

Effect of the difference in allelic frequencies in the F0
The difference in allelic frequency between founding popu-
lations does not seem to affect the R2. This means that
even SNP that segregate at very different frequencies in
founders can be imputed with high accuracy as revealed in
Figure 8. Moreover, the apparent drop in R2 for MAF dif-
ferences over 0.75 presented in Figure 8 is largely an arte-
fact of very small number of SNP used in the smoothing
line fit.

Discussion
SNP selection methods and accuracy of imputation
A main goal of the present research was to evaluate accur-
acy of imputation in an F2 cross of pigs (Duroc × Pietrain)
using different genotyping scenarios. In a first stage, IA was
calculated from simulated F2 data. An ideal situation for
linkage based imputation would be to select SNP equally
spaced based on genetic distance, as the possibility of re-
combination between imputed SNP and tagSNP would be
minimal. However, this is not possible in the absence of a
high resolution linkage map. Consequently, to position the
tagSNP we used two proxies: a) physical spacing, and b)
LD-based selection. For our simulated population, the two
proxies produced the same results, most likely because it
was assumed that 1cM= 1 Mb uniform recombination
rate. Therefore, in this simulated population, the average
distance between tagSNP throughout the genome proved
to be a good indicator of accuracy of imputation (IA), as
values greater or equal to 0.97 were obtained using average
distances among tagSNP that were less than or equal to 2.1
Mb. Next, the selection of tagSNP using the LD method
was compared to choosing SNP located at regularly spaced
intervals throughout the genome. In the first method, LD
was measured by rt

2, the minimum threshold of r2 between
any non-tagSNP with at least one tagSNP. It was observed
that when rt

2 increased, the number of selected tagSNP
and IA also increased. The accuracy was between 0.960
(rt
2 = 0.1) and 0.982 (rt

2 = 0.5), with average distance be-
tween tagSNP of 1.86 Mb and 0.16 Mb, respectively. Xu
et al. [28] used rt

2 = 0.8 to select a set of tagSNP for
genome-wide association analyses in humans. Their use
ured by IA or by R2

Accuracy of imputation

Progeny IA R2

LowD 0.962 0.884

LowD 0.833 0.408

tal data (tagSNP panel = 30 SNP), under two situations: 1) F0 and F1 at high



Figure 6 Imputation accuracy (R2) for SNP on chromosome 12 as a function of the minor allele frequency in the F0. Accuracy of
imputation of experimental data as a function of minor allele frequency of each SNP (blue dots). Local regression fit (red dots).
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Figure 7 Imputation accuracy (R2) for SNP on chromosome 12 as a function of the distance to the closest tagSNP. Blue dots are non-
tagSNP (Experimental data); distance in base pairs (Log10). Local regression fit is displayed by the red dots.
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Figure 8 Imputation accuracy (R2) for SNP on chromosome 12 as a function of the difference in allelic frequencies. Accuracy of
imputation using experimental data for the difference in allelic frequencies (blue circles) between founding breeds (Pietrain and Duroc). Local
regression fit (red dots).
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was slightly different from ours in that they were selecting
SNP to tag causative variants for genome-wide association
using population level LD information only. On the other
side, we wanted to use this method to select SNP that were
more evenly spaced in terms of genetics distance as done
previously with outbred pig populations [10], but this time
exploiting within and between family LD. Consequently,
low levels of rt

2 were used in the current study as we found
that with a threshold of rt

2 ≥ 0.6, many tagSNP were se-
lected with marginal increases of IA. The second method
employed to select tagSNP consisted of dividing the
chromosome into segments of equal size, and then choos-
ing the SNP that lay closest to the center of the segment.
Other studies have used evenly spaced tagSNP by selecting
one SNP every given number of markers [12], or by choos-
ing in each segment the SNP with the largest MAF
[4,11,12]. The fact that we had available a sizable number
of SNP throughout the genome, i.e. 60 K, made it possible
to select approximately evenly spaced SNP with a wide
range of MAF, as long as those SNP were segregating in
the population. The values of IA calculated while using
tagSNP chosen at evenly spaced segments were similar to
those obtained using the LD method. This similarity of re-
sults may be due to an assumption made in the method of
SNP selection at evenly spaced intervals, i.e. that the distri-
bution of LD along the genome is almost uniform and
there are no large blocks of LD. In the current research,
the haplotypes of F1 animals are sampled from two
populations: Duroc and Pietrain. The resulting LD was
relatively high and uniformly distributed, except for a few
blocks with extremely high LD: blocks with at least 7 con-
secutive SNP with r2 ≥ 0.8. For this reason, evenly spaced
tagSNP and tagSNP selected based on the LD method
produced similar imputation accuracy at equivalent dens-
ity. Although we indeed simulated assuming uniform re-
combination rates, these results seem to agree also with
experimental data, where the two methods of selection
used here produced virtually the same accuracy in an out-
bred pig population [10]. Designing custom low density
SNP panels for each population of interest would not be
cost effective. Consequently, we investigated the imput-
ation accuracy obtained using a commercially available
SNP chip with markers selected based on physical position
and MAF [10].
Imputation using 9K panel and genotyping scenarios
Data from a 9K chip (average distance between SNP =
0.30 Mb) were used as a LowD panel to impute to a HD
60K panel. Using the experimental data from F2 individ-
uals, different genotyping scenarios were tested. In the
first scenario, data consisted of F0 and F1 genotypes at HD
and F2 at LowD, and average IA was 0.99. Similarly,
Weigel et al. [13] imputed 8K genotypes to 43K using in-
formation of the sire, dam, and grandsires (paternal and
maternal), and obtained a value of IA > 0.95.
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Our second scenario included the F1 genotyped at 9K,
between the generations of grandparents and grand-
offspring, and it was observed that IA of F2 decreased to
0.9. In our last scenario F0 and F1 were genotyped at HD
and F2 at LowD but the relationships between the F2 and
the reference panel were ignored, resulting in an average
accuracy of imputation of 0.9. Badke et al. [10] used the ge-
notypes of a reference population formed by trios to im-
pute genotypes of an unrelated population, and obtained
values of IA of 0.90 and 0.95 using reference groups of 16
and 64 animals, respectively.
Habier et al. [6] indicated that the reasons for the decay

in accuracy of imputation are two-fold: 1) the accuracy of
haplotyping the tagSNP flanking the non-tagSNP; 2) the ac-
curacy of haplotyping the imputed non-tagSNP, conditional
on a correct haplotyping of the tag-SNP. Therefore, the im-
pact of both factors under the first two scenarios and taking
into account the relationships between the individuals in
the F2 and in the reference population, were evaluated by
means of simulated data. Accuracies of haplotyping were
calculated as the number of erroneous inference of phase
between consecutive heterozygous markers, as in Druet
and Georges [31]. In all scenarios, it was observed that the
phases of tagSNP were correct, thus the uncertainty was
due to the grandparental origin of the non-tagSNP that
were flanked by the tagSNP. The next step was to quantify
the fraction of non-tagSNP with uncertain phase. When F0
and F1 were genotyped at HD and F2 was genotyped at
LowD, the fraction of non-tagSNP with uncertain phase
was 4%, whereas this statistic was 30% when the F0 was ge-
notyped at HD, and the F1 and F2 were genotyped at LowD.
The corresponding IA were 0.97 and 0.85, respectively.
These results suggest that accuracies of imputation in the
current study were affected by knowledge of the phase of
non-tagSNP. Moreover, when the amount of genotypes
from related individuals (i.e., F0 at HD) increases, the accur-
acy of haplotyping goes up, and the accuracy of imputation
also increases. These results apply to genotyping designs
with a pedigree with a small number of founder individuals
genotyped in HD and a large number of progeny genotyped
in LowD. If the phase is known in the founders, it is easy to
accurately follow transmission of chromosomal segments
to the remainder of the population using linkage informa-
tion. In practice, however the phase needs to be ascertained
using LD information. Such information is very limited in
cases such as our F0 because of reduced sample size. In that
case, the researchers can follow two paths. First, as
presented with large pedigrees, having extra animals from
the same founding population(s) can help in using LD to
accurately phase those animals. Second, as presented here,
two consecutive generations can be genotyped in HD to
use the information in grand-parents (F0) to accurately
phase the parents (F1) and then use linkage information to
impute genotypes within the progeny (F2). For such
approaches to work, full pedigree information (three gener-
ations) and two generations of HD genotypes are needed.
The approach is still cost effective in typical F2 populations
[6,32]. These results are partially reaffirmed in large pedi-
gree based imputation.

MAF effect
The measures of accuracy of imputation that are based
only on allelic counts are not useful for comparing SNP
having different values of MAF. This is due to the fact that
imputation errors are highly sensitive to the value of the
allelic frequencies [8,12,30]. To overcome this restriction,
two alternative measures of accuracy of imputation have
been proposed: 1) the correlation between imputed and
observed genotypes [8]; and 2) an accuracy of imputation
corrected to its expected value [12,30]. The second
method consists of adjusting the calculated accuracy of
imputation by the difference between the observed accur-
acy and an estimate of the expected value under random
sampling. There are several possible ways of calculating
the accuracy under this method. Regardless of the meas-
ure being used to calculate the accuracy, a trend for the
accuracy of imputation to drop when MAF < 0.15 has
been observed. For example, in maize Hickey et al. [8] ob-
served a decrease in R2 when MAF < 0.10, and the drop
was higher when the masked genotypes were >84% of
total SNP. Similarly, Lin et al. [30] used human data with
the correction for expected accuracy and observed a
marked decrease in accuracy of imputation when MAF <
0.15. Hayes et al. [12] used the same correction as Lin
et al. [30] with sheep data and found highly variable accur-
acies of imputation but tending to decrease whenever
MAF < 0.10. The correlation between observed and im-
puted genotypes (R2) was employed in the current re-
search to evaluate the effect of MAF on imputation
accuracy. Our results showed that markers with MAF <
0.10 in the founders were imputed with reasonably good
accuracy in the F2 (Figure 6), a result different from those
previously discussed. This is not unexpected considering
we used both LD and linkage (pedigree information), as
sources of information from our crossbred population.
Therefore, the allele frequency in the F0 does not matter
as long as in that generation the two alleles are segregat-
ing. Moreover, whenever the F1 is genotyped at HD, SNP
with low MAF can be observed in the F0 and F1. Coupled
to the fact that all family relationships are known, this
simplifies the imputation of F2 animals.

Possible effects in association
In the current research we compared allelic dosage of ob-
served and imputed genotypes to find accurate genotyping
design and imputation methods for LowD genotypes in an
F2 population. Zhen et al. [33] reported that the regression
of phenotype on allelic dosage was an accurate method to
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evaluate QTL effects. Moreover, they observed that when
accuracies of imputation were high, the power for the as-
sociation test was high. For example, accuracies of imput-
ation > 0.95 were associated with values of power > 0.85.
In the current study, the accuracy of imputation obtained
with the 9K panel was R2 = 0.94, which suggests that the
power for an association test is high. Other studies also
found that imputation improved the power for association
tests. Using data from humans, Hao et al. [34] compared
the power for GWAS analysis of four different strategies
involving imputation: (1) directly testing for associations
using the Illumina 317K SNPs, (2) testing for associations
using the entire imputed HapMap SNP set based on the
Illumina 317K genotype data; (3) directly testing for asso-
ciations using the Illumina 650Y SNPs; and (4) testing for
associations using the entire imputed HapMap SNP set
based on Illumina 650Y genotype data. It was observed
that genomic wide imputation (strategies 2 and 4) im-
proved power by 5.5% for the Illumina 317K, or 3.3% for
Illumina 650Y, compared to the analyses with assayed
SNPs only (strategies 1 and 3, respectively). Similar results
were obtained by Anderson et al. [5] for the 300K and
550K platforms.
The cost of genotyping is an important consideration.

At present, the cost of commercial HD genotyping (60K)
for pigs is more than twice as much as the cost of geno-
typing with the 9K chip. Assuming a population with a
structure similar to the one used here (approximately 20
F0, 56 F1 and 1000 F2), one can genotype 1.9 times more
individuals in a scenario with F0 and F1 at HD, and F2 at
LowD than in a scenario with F0, F1 and F2 at HD. The
imputed genotypes can then be used for association or for
meta-analysis studies.

Conclusions
Designing custom SNP panels for each F2 population to
be imputed will likely not be cost effective due to the rela-
tively large number of SNP needed to attain reasonable
imputation accuracies, and the high development costs for
each SNP panel. In particular, for our population we
would need a minimum of M= 1,200 markers with aver-
age distance of 2.1 Mb to have IA over 0.97 in the F2. On
the other hand, using the 9K panel as tagSNP (LowD)
resulted in IA of 0.99 when the F0 and F1 were genotyped
at HD and the F2 at LowD. The cost of such genotyping
scheme would be less than half the cost of using HD ge-
notypes for all individuals. The correlation between ob-
served and imputed genotypes was high (R2 = 0.94), so
that the power for future association studies would be
high. Thus, under a genotyping strategy of high accuracy
of imputation (i.e., F0 and F1 at HD, F2 at LowD), informa-
tion on imputed genotypes from more animals that is
similar to that from a HD panel can be obtained at a lower
cost. These results apply to the imputation of markers in
the SNP60 beadchip, in populations where a small num-
ber of founders can be genotyped at HD and phase of par-
ents of imputed animals can be derived with certainty.
Translation of LD-based results, on the other hand, are
constrained to pig populations showing similar levels of
LD as in the founding animals [35].

Methods
Animals
The experimental population was raised at the Michigan
State University Swine Teaching and Research Farm, East
Lansing, MI [1]. Parents from the initial generation (F0)
were four unrelated Duroc boars mated to 15 Pietrain
sows by artificial insemination. From all resulting F1 ani-
mals, 50 females and 6 males (progeny of 3 F0 sires) were
selected as parents for the F2 generation, by avoiding full
or half sib matings. A total of 1,259 F2 piglets were born
alive from 142 litters out of 11 farrowing groups. Animal
protocols were approved by the Michigan State University
All University Committee on Animal Use and Care (AUF#
09/03-114-00).

Genotyping and data editing
DNA was isolated from white blood cells using standard
procedures as we have previously described for this popu-
lation [1]. Quantity and quality of DNA samples were de-
termined using a Qubit fluorometer (Invitrogen by Life
Technologies, Carlsbad, CA, USA). The number of geno-
typed animals was N= 411 (4 F0 Duroc boars, 15 F0
Pietrain sows, 6 F1 males, 50 F1 females and 336 F2 pigs).
Genotyping was performed at a commercial laboratory
(GeneSeek, a Neogen Company, Lincoln, NE, USA)
using the Illumina PorcineSNP60 beadchip [36]. Out
of M = 62,163 SNP, 6,422 SNP were eliminated as their
physical positions were unknown. Mendelian inconsist-
encies (≤ 0.01%) were taken as missing genotypes, and
12 animals (1 F1 and 11 F2) with more than 10% of SNP
missing were not used in any analysis. By similar consider-
ation, 3,038 SNP were removed from the analyses due to
presenting more than 10% missing data. Additionally,
10,139 SNP were excluded as their minor allele frequency
(MAF) was below 0.01. These editing policies resulted in a
data set comprising 399 pigs with 45,003 SNP per animal.
This editing procedure followed that of Badke et al. [35]
and the program PLINKv1.07 [37] was used. Additionally,
starting with genotypes for F0 and F1 animals, genotypes
for 932 F2 animals were simulated conditional on the real
pedigree using a gene-dropping model. Simulated geno-
types were used to assess alternative tagSNP selection
procedures while experimental genotypes on a subset of
animals (n = 336) were used to assess imputation accuracy
using a SNP list for a 9K commercial chip that has re-
cently been publicly released by GeneSeek Inc. (Lincoln,
NE, USA; described in Badke et al. [10]).
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Genotype simulation
A stochastic simulation was performed to evaluate two dif-
ferent methods of selecting tagSNP for imputation on the
accuracy of the resulting F2 genotypes. The genotypes of
932 F2 animals were simulated using gene-dropping [38]
theory, by conditioning on a real pedigree and on the hap-
lotypes of the 55 F1 parents (6 males and 49 females) from
the real F2 population. The haplotypes were estimated at a
high accuracy from the genotypes of the F1 parents and 19
F0 ancestors (4 Duroc boars and 15 Pietrain sows), using
the software MERLIN [39]. The number of recombinations
in the F1 haplotypes were drawn from a Poisson distribu-
tion with mean equal to the length of the given chromo-
some in Morgans (M) by assuming 1 Mb = 1 cM [40]. The
positions of the recombinations were simulated from a
uniform distribution using Haldane’s mapping function
[41,42]. As an example, there were 1,405 SNP on chromo-
some 12 that were spread over 64.2 Mb, and the ensuing
average distance between markers was 0.04573 Mb. By as-
suming a recombination rate of 1 cM per Mb [38], the
number of recombinations in chromosome 12 was drawn
from a Poisson distribution with parameter equal to 64.2 /
100 = 0.642. The next step was to assign the resulting gam-
etes carrying these recombinations of the F1 genotypes to
their F2 progeny.

TagSNP selection using simulated dataset
Two different methods were used for tagSNP selection: 1)
The first one consisted of a statistical search built into the
software FESTA [43] and used information on LD [44]. In
this method, each SNP was either an element of the
tagSNPset, or in LD with an existing element in the
tagSNPset, at a value equal or larger than a specified
threshold (rt

2) [10]. A minimum level of rt
2 based on pair-

wise LD of the F1 haplotypes was selected, so that all SNPs
above the chosen threshold were selected as tagSNP. 2)
The second method consisted of selecting evenly-spaced
markers. The chromosome was divided into k segments of
equal length, and then the SNP that was closest to the cen-
ter of the segment was selected. In cases where there were
no SNP lying in a segment, no selection was performed
resulting in the number of tagSNP≤k in segments of ap-
proximately equal length.

Genotype imputation
For simulated data, F2 genotypes of non-typed markers
were imputed using the algorithm of Lander and Green
[39] that predicts the non-tagSNP by conditioning on the
observed markers. For computational reasons the pedigree
was analyzed on a per litter basis. Thus, for each F2 litter,
a three generation pedigree was built [45] using the four
F0 grandparents, the two F1 parents, and up to a max-
imum of 10 F2 animals. When the litter had more than 10
progeny, a new “family” was formed with the four F0
grandparents, the two F1 parents and the remaining F2 an-
imals. The resulting “families” were analyzed separately
and genotypes were imputed with MERLIN [39]. Breaking
the pedigree in this way produces some loss of informa-
tion, but simulation results (data not shown) suggested
that the loss was negligible.
For experimental data, F2 genotypes of non-typed

markers were imputed using the algorithm built into the
software AlphaImpute [4]. The algorithm implemented
in AlphaImpute [4] uses information on population-wide
and within family LD and it required certain tuning. In
particular, we set the core length parameter to 100, 150,
400 and 600 SNP and the tail parameter haplotype to 300,
400, 600 and 800 SNP, respectively. Likewise, genotype
error percentage parameter was set to 0%, so as to obtain
a high percentage of alleles under the correct phase [46].
The algorithm was run for the entire pedigree as there
was no computing restriction in this case.

Calculation of the accuracy of imputation
Irrespective of data generation (simulation or experimen-
tal), the accuracy of genotype imputation in F2 individuals
for all methods was evaluated using two different statistics.
First, the mean of the difference between observed and im-
puted allelic dosage was calculated [9,13] as follows:

IA ¼ 1−
1
2N

XN

i
∑Mi
j ĝ ij−ĝ ij
���

���

In this expression, N is the total number of animals im-
puted, Mi represents the number of markers with
observed genotype in animal i, gij is the observed (experi-
mental or simulated) allelic dosage in animal i and SNP j,
and ĝij is the corresponding imputed allelic dosage. Allelic
dosage was defined as the number of copies of a reference
allele that took values 0, 1 and 2 for homozygous reference,
heterozygous and homozygous non-reference, respectively.
The second expression used to quantify the imputation ac-
curacy was the square of the correlation between observed
and imputed genotypes at each allele, or R2 statistics of
Huang et al. [47]. Denoting �̂g , the average value of the im-
puted genotypes, and with �g the average value of observed
genotypes, the R2 statistics were calculated as follows:

R2 ¼

XN
i¼1

ĝ ij−�̂g
� �

gij��g
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The statistic is interpreted as a squared correlation
coefficient.
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