81 research outputs found
Elliptical Subject Specific model for respiratory motion
Respiratory motion of the heart poses a problem for high resolution cardiac MR imaging. Prospective slice following uses the navigator position immediately prior to the imaging segment to correct the slice positions throughout the segment [1]. The navigator is typically placed over the right hemi-diaphragm and a fixed correction factor is used to adjust for the difference to the motion of the heart. The relationship between the motion of the heart and the superior-inferior motion of the diaphragm is approximately linear although highly subject specific, with an element of hysteresis [2]. We investigated a more complex model to incorporate non rigid transformation of the heart as well as hysteresis
Functional MRI language mapping in pre-surgical epilepsy patients: Findings from a series of patients in the Epilepsy Unit at Mediclinic Constantiaberg
Background. Functional magnetic resonance imaging (fMRI) is commonly applied to study the neural substrates of language in clinical research and for neurosurgical planning. fMRI language mapping is used to assess language lateralisation, or determine hemispheric dominance, and to localise regions of the brain involved in language. Routine fMRI has been introduced in the Epilepsy Unit at Mediclinic Constantiaberg to contribute to the current functional mapping procedures used in pre-surgical planning.Method. In this paper we describe the language paradigms used in these routine studies as well as the results from 22 consecutive epilepsy patients. Multi-subject analyses were performed to assess the reliability of activation patterns generated by two language mapping paradigms, namely a verb generation task and passive listening task. Results from a finger-tapping task are also presented.Results. The paradigms generate reliable and robust signal changes, enabling both the lateralisation of language and localisation of expressive and receptive language cortex.Conclusion. The fMRI results are meaningful at the group and individual level and can be recommended for language mapping in pre-surgical patients.
CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations
This paper introduces a novel activity dataset which exhibits real-life and
diverse scenarios of complex, temporally-extended human activities and actions.
The dataset presents a set of videos of actors performing everyday activities
in a natural and unscripted manner. The dataset was recorded using a static
Kinect 2 sensor which is commonly used on many robotic platforms. The dataset
comprises of RGB-D images, point cloud data, automatically generated skeleton
tracks in addition to crowdsourced annotations. Furthermore, we also describe
the methodology used to acquire annotations through crowdsourcing. Finally some
activity recognition benchmarks are presented using current state-of-the-art
techniques. We believe that this dataset is particularly suitable as a testbed
for activity recognition research but it can also be applicable for other
common tasks in robotics/computer vision research such as object detection and
human skeleton tracking
Diffusion tensor imaging point to ongoing functional impairment in HIV-infected children at age 5, undetectable using standard neurodevelopmental assessments
Background
Perinatal HIV infection negatively impacts cognitive functioning of children, main domains affected are working memory, processing speed and executive function. Early ART, even when interrupted, improves neurodevelopmental outcomes. Diffusion tension imaging (DTI) is a sensitive tool assessing white matter damage. We hypothesised that white matter measures in regions showing HIV-related alterations will be associated with lower neurodevelopmental scores in specific domains related to the functionality of the affected tracts.
Methods
DTI was performed on children in a neurodevelopmental sub study from the Children with HIV Early Antiretroviral (CHER) trial. Voxel-based group comparisons to determine regions where fractional anisotropy and mean diffusion differed between HIV+ and uninfected children were done. Locations of clusters showing group differences were identified using the Harvard–Oxford cortical and subcortical and John Hopkins University WM tractography atlases provided in FSL. This is a second review of DTI data in this cohort, which was reported in a previous study. Neurodevelopmental assessments including GMDS and Beery-Buktenica tests were performed and correlated with DTI parameters in abnormal white matter.
Results
38 HIV+ children (14 male, mean age 64.7 months) and 11 controls (4 male, mean age 67.7 months) were imaged. Two clusters with lower fractional anisotropy and 7 clusters with increased mean diffusion were identified in the HIV+ group. The only neurodevelopmental domain with a trend of difference between the HIV+ children and controls (p = 0.08), was Personal Social Quotient which correlated to improved myelination of the forceps minor in the control group. As a combined group there was a negative correlation between visual perception and radial diffusion in the right superior longitudinal fasciculus and left inferior longitudinal fasciculus, which may be related to the fact that these tracts, forming part of the visual perception pathway, are at a crucial state of development at age 5.
Conclusion
Even directed neurodevelopmental tests will underestimate the degree of microstructural white matter damage detected by DTI. The visual perception deficit detected in the entire study population should be further examined in a larger study
Mediating and Moderating Effects of Iron Homeostasis Alterations on Fetal Alcohol-Related Growth and Neurobehavioral Deficits
We have previously demonstrated prenatal alcohol exposure (PAE)-related alterations in maternal and infant iron homeostasis. Given that early iron deficiency and PAE both lead to growth restriction and deficits in recognition memory and processing speed, we hypothesized that PAE-related iron homeostasis alterations may mediate and/or moderate effects of PAE on growth and neurobehavior. We examined this hypothesis in a prenatally recruited, prospective longitudinal birth cohort [87 mother-infant pairs with heavy prenatal alcohol exposure (mean = 7.2 drinks/occasion on 1.4 days/week); 71 controls], with serial growth measures and infant neurobehavioral assessments. PAE was related to growth restriction at 2 weeks and 5 years, and, in infancy, poorer visual recognition memory, slower processing speed, lower complexity of symbolic play, and higher emotionality and shyness on a parental report temperament scale. Lower maternal hemoglobin-to-log(ferritin) ratio, which we have shown to be associated with PAE, appeared to exacerbate PAE-related 2-week head circumference reductions, and elevated maternal ferritin, which we have shown to be associated with PAE, appeared to exacerbate PAE-related visual recognition memory deficits. In causal inference analyses, PAE-related elevations in maternal ferritin and hemoglobin:log(ferritin) appeared to statistically mediate 22.6–82.3% of PAE-related growth restriction. These findings support potential mechanistic roles of iron homeostasis alterations in fetal alcohol spectrum disorders (FASD)
Quantifying right ventricular motion and strain using 3D cine DENSE MRI
Background: The RV is difficult to image because of its thin wall, asymmetric geometry and complex motion. DENSE is a quantitative MRI technique for measuring myocardial displacement and strain at high spatial and temporal resolutions [1,2]. DENSE encodes tissue displacement directly into the image phase, allowing for the direct extraction of motion data at a pixel resolution. A free-breathing navigator-gated spiral 3D cine DENSE sequence was recently developed [3], providing an MRI technique which is well suited to quantifying RV mechanics. Methods: Whole heart 3D cine DENSE data were acquired from two normal volunteers, after informed consent was obtained and in accordance with protocols approved by the University of Virginia institutional review board. The endocardial and epicardial contours were manually delineated to identify the myocardium from surrounding anatomical structures. A 3D spatiotemporal phase unwrapping algorithm was used to remove phase aliasing [4], and 3D Lagrangian displacement fields were derived for all cardiac phases. Midline contours were calculated from the epicardial and endocardial contours, and tissue tracking seed points were defined at pixel spaced intervals. A 3D tracking algorithm was implemented as a direct extension of the 2D tracking algorithm presented in [4], producing midline motion trajectories from which strain was calculated. Tangential 1D strain was calculated in the longitudinal and circumferential cardiac directions. Strain time curves are computed representing the free wall of the RV. Results: Figure 1 illustrates the RV free wall mean tangential 1D strain time curves for approximately 3/4 of the cardiac cycle over the apical-mid section of the heart for one volunteer. Results show measurements ranging between -0.1 and -0.25, and further illustrate a greater displacement in the longitudinal direction. Results compare favorably with studies using myocardial tagging and DENSE[5,6]
Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance
Abstract
Background
The most time consuming and limiting step in three dimensional (3D) cine displacement encoding with stimulated echoes (DENSE) MR image analysis is the demarcation of the left ventricle (LV) from its surrounding anatomical structures. The aim of this study is to implement a semi-automated segmentation algorithm for 3D cine DENSE CMR using a guide point model approach.
Methods
A 3D mathematical model is fitted to guide points which were interactively placed along the LV borders at a single time frame. An algorithm is presented to robustly propagate LV epicardial and endocardial surfaces of the model using the displacement information encoded in the phase images of DENSE data. The accuracy, precision and efficiency of the algorithm are tested.
Results
The model-defined contours show good accuracy when compared to the corresponding manually defined contours as similarity coefficients Dice and Jaccard consist of values above 0.7, while false positive and false negative measures show low percentage values. This is based on a measure of segmentation error on intra- and inter-observer spatial overlap variability. The segmentation algorithm offers a 10-fold reduction in the time required to identify LV epicardial and endocardial borders for a single 3D DENSE data set.
Conclusion
A semi-automated segmentation method has been developed for 3D cine DENSE CMR. The algorithm allows for contouring of the first cardiac frame where blood-myocardium contrast is almost nonexistent and reduces the time required to segment a 3D DENSE data set significantly
Multimodal magnetic resonance neuroimaging measures characteristic of early cART-treated pediatric HIV: A feature selection approach
Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes despite early combination antiretroviral therapy (cART). While CPHIV-related brain alterations can be investigated separately using proton magnetic resonance spectroscopy
- …