11 research outputs found
To substantiation the minimum fishing length for <i>Lycodes soldatovi</i> (Zoarcidae)
Lycodes soldatovi is one of the dominant mezobental fish species in the Okhotsk Sea, it has a commercial value. The minimal length for its sustainable fishery is defined on the base of mass measurements of 12075 ind., biological analysis of 3993 ind., and age determination for 628 ind. Its maximal registered length is 83 cm, the length of mass maturation is about 57 cm. The latter can be considered as the fishing length limit. Landings of L. soldatovi are low and do not affect negatively on the population, so any restrictive measures aren’t required yet
Quantum Efficiency of Cold Electron Bolometer Optical Response
In this paper we present the measurements of optical response dependence on power load of a Cold Electron Bolometer integrated in a twin slot antenna. These measurements are also compared to the models of the bolometer limit and the photon counter limit. The responsivity of 0.22*10^9 V/W was measured at 0.22 pW radiation power from a black body at 3.5 K. According to our estimations, for optimized device the voltage responsivity at 100 mK electron temperature can approach Sv=10^10 V/W for power load below 0.1 pW and decreases down to 10^7 V/W at 300 mK for 5 pW signal power in a sample with absorber volume of 5*10^-20 m^3. In the case of low bath temperatures and high applied RF power the changes of tunneling current, dynamic resistance and voltage response are explained by non-thermal energy distribution of excited electrons. Distribution of excited electrons in such system at lower temperatures can be of non-Fermi type, hot electrons with energies of the order of 1 K tunnel from normal metal absorber to superconductor instead of relaxing down to thermal energy kTe in absorber before tunneling. This effect can reduce quantum efficiency of the bolometer at 350 GHz from hf/kTph>100 in ideal case down to single electron per absorbed photon (Q.Eff=1) in the high power case. Methods of preserving high quantum efficiency are discussed
Superconducting integrated submillimeter receiver for TELIS
In this report an overview of the results on the development of a single-chip superconducting integrated receiver for the Terahertz Limb Sounder (TELIS) balloon project intended to measure a variety of stratosphere trace gases is presented. The Superconducting Integrated Receiver (SIR) comprises in one chip a planar antenna integrated with a superconductor-insulator-superconductor (SIS) mixer, a superconducting Flux Flow Oscillator (FFO) acting as Local Oscillator (LO) and a second SIS harmonic mixer (HM) for FFO phase locking. As a result of the FFO design optimization a free-running linewidth between 9 and 1.5 MHz has been measured in the frequency range 500-710 GHz resulting in phase-locking of 35 to 95% of the FFO power correspondingly. A new generation of the SIR devices with improved FFO performance and optimized interface between FFO and SIS/HM has been developed and comprehensively tested. As a result all required TELIS parameters were demonstrated., Phase-locked FFO operation over entire SIR channel frequency range has been realized, spectral resolution below 1 MHz has been confirmed by gas cell and CW signal measurements. An uncorrected double side band (DSB) noise temperature below 250 K has been measured with the phase-locked FFO. The intermediate frequency bandwidth 4-8 GHz; has been realized. To ensure remote operation of the phase-locked SIR several procedures for its automatic computer control have been developed and tested
A 1mM SIS receiver utilizing different intermediate frequency (IF) configurations
We present experimental studies of the noise performance of a prototype heterodyne SIS receiver operating at wavelengths of about 1mm. The receiver employs different 4-12GHz intermediate frequency amplification chain configurations: a standalone low noise amplifier (LNA), the LNA cascading with a cryogenic isolator, and a low noise balanced amplifier. From our experiments and measurements, we could conclude that the latter configuration demonstrates the best broadband noise performance. In fact, the receiver equipped with the balanced LNA does not have noticeable noise degradation caused by the IF hybrids of the balanced LNA scheme. Moreover, our results indicate that even broader IF bandwidth of the receivers could be prospectively reached using balanced LNAs in the IF amplification chain
Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder
The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight
Integrated SubmmWave Receiver: Development and Applications
A superconducting integrated receiver (SIR) comprises in a single chip a planar antenna combined with a superconductor-insulator-superconductor (SIS) mixer, a superconducting Flux Flow Oscillator (FFO) acting as a Local Oscillator (LO) and a second SIS harmonic mixer (HM) for the FFO phase locking. In this report, an overview of the SIR and FFO developments and optimizations is presented. Improving on the fully Nb-based SIR we have developed and studied Nb–AlN–NbN circuits, which exhibit an extended operation frequency range. Continuous tuning of the phase locked frequency has been experimentally demonstrated at any frequency in the range 350–750GHz. The FFO free-running linewidth has been measured between 1 and 5MHz, which allows to phase lock up to 97% of the emitted FFO power. The output power of the FFO is sufficient to pump the matched SIS mixer. Therefore, it is concluded that the Nb–AlN–NbN FFOs are mature enough for practical applications. These achievements enabled the development of a 480–650GHz integrated receiver for the atmospheric-research instrument TErahertz and submillimeter LImb Sounder (TELIS). This balloon-borne instrument is a three-channel superconducting heterodyne spectrometer for the detection of spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies.
One of the channels is based on the SIR technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the
application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120K in double sideband operation, with an intermediate frequency band of 4–8GHz. The spectral resolution is well below 1MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden.
Capability of the SIR for high-resolution spectroscopy has been successfully proven also in a laboratory environment by gas cell measurements. The possibility to use SIR devices for the medical analysis of exhaled air will be discussed. Many
medically relevant gases have spectral lines in the sub-terahertz range and can be detected by an SIR-based spectrometer. The SIR can be considered as an operational
device, ready for many applications