1,001 research outputs found

    Seed selection for information cascade in multilayer networks

    Full text link
    Information spreading is an interesting field in the domain of online social media. In this work, we are investigating how well different seed selection strategies affect the spreading processes simulated using independent cascade model on eighteen multilayer social networks. Fifteen networks are built based on the user interaction data extracted from Facebook public pages and tree of them are multilayer networks downloaded from public repository (two of them being Twitter networks). The results indicate that various state of the art seed selection strategies for single-layer networks like K-Shell or VoteRank do not perform so well on multilayer networks and are outperformed by Degree Centrality

    Length functions on currents and applications to dynamics and counting

    Full text link
    The aim of this (mostly expository) article is twofold. We first explore a variety of length functions on the space of currents, and we survey recent work regarding applications of length functions to counting problems. Secondly, we use length functions to provide a proof of a folklore theorem which states that pseudo-Anosov homeomorphisms of closed hyperbolic surfaces act on the space of projective geodesic currents with uniform north-south dynamics.Comment: 35pp, 2 figures, comments welcome! Second version: minor corrections. To appear as a chapter in the forthcoming book "In the tradition of Thurston" edited by V. Alberge, K. Ohshika and A. Papadopoulo

    Contrasting spatial heterogeneity of sessile organisms within mussel (Perna perna L.) beds in relation to topographic variability

    Get PDF
    We examined the spatial heterogeneity in three sessile rocky shore organisms, the mussel Perna perna, the barnacle Octomeris angulosa (Sowerby) and the red alga Gelidium pristoides (Turn.) at a range of continuous local scales along horizontal transects within mid- and upper mussel beds of South African shores. We also examined the relationships between variability of organisms and topographic features (rock depressions, slope, aspect), and between mussel, barnacle and algal variability over the same scales. To estimate spatial heterogeneity, we analyzed scaling properties of semivariograms using a fractal approach. Relationships between different variables at the different scales were examined by cross-semivariograms. Spatial dependence of P. perna variability increased with spatial dependence of topographic variability, so that scaling regions of mussel and topographic distributions corresponded well. This relationship often improved with larger local scales (mussel cover increased with depressions, steeper slope and aspect towards waves), while at smaller spatial scales, variability in mussel cover was less well explained by variability in topography. The variability of the barnacle O. angulosa exhibited spatial dependence, even on topographically unstructured shores. In contrast, the distribution of the alga G. pristoides revealed high fractal dimensions, showing spatial independence on topographically unstructured shores. Algae also showed a very strong negative relationship with mussels at most local scales, and a negative relationship with barnacles in upper zones, especially at larger local scales. Barnacles may show clear spatial dependence because of hydrodynamics (at larger local scales) and the need to find a future mate in close proximity (at smaller local scales), while algae may show a strong negative relationship with mussels because of competition for space

    Hyperbolic cone metrics and billiards

    Get PDF
    A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point

    Hyperbolic cone metrics and billiards

    Get PDF
    A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point

    Implications of the Partial Ring Design for a Clinical SPECT Insert

    Get PDF
    The INSERT system is a stationary SPECT insert designed for clinical SPECT/MRI. The system has been evaluated as a standalone SPECT scanner and here the image reconstruction is evaluated to determine the implications of its design. A two-step image acquisition can be implemented to overcome the limitations of the partial ring design. The image quality and activity linearity are evaluated through a set of point sources and vials of varying activity concentration. The evaluation highlighted areas where image reconstruction and data processing needed to improve before proceeding to simultaneous SPECT/MRI acquisitions. We have shown that the proposed dual acquisition method can produce improved image quality through the use of modified data acquisition and reconstruction protocols

    Adsorption of Fibrinogen on Thin Oriented Poly(Tetrafluoroethylene) (PTFE) Fibres Studied by Scanning Force Microscopy

    Get PDF
    We have investigated fibrinogen adsorption on ordered poly(tetrafluoroethylene), PTFE, fibres deposited on hydrophilic and hydrophobic silicon substrates. Fibrinogen molecules appear to adsorb with their long axis perpendicular to the fibre direction for PTFE fibres having widths of less than 100 nm. On these thin fibres, fibrinogen apparently forms close packed bands or clusters, consisting of small integer numbers of molecules arranged parallel to each other. On broader (\u3e 100 nm) PTFE fibres, the fibrinogen forms two dimensional networks. The orientation of the molecules in these networks is random in the central flat part of the fibres but perpendicular to the fibre direction at the fibre edges. As a tentative explanation, we propose that the observed orientation may be linked to the radius of curvature of the fibre surface

    Towards accurate partial volume correction in (99m}^Tc oncology SPECT: perturbation for case-specific resolution estimation

    Get PDF
    BACKGROUND: Currently, there is no consensus on the optimal partial volume correction (PVC) algorithm for oncology imaging. Several existing PVC methods require knowledge of the reconstructed resolution, usually as the point spread function (PSF)-often assumed to be spatially invariant. However, this is not the case for SPECT imaging. This work aimed to assess the accuracy of SPECT quantification when PVC is applied using a case-specific PSF. METHODS: Simulations of SPECT [Formula: see text]Tc imaging were performed for a range of activity distributions, including those replicating typical clinical oncology studies. Gaussian PSFs in reconstructed images were estimated using perturbation with a small point source. Estimates of the PSF were made in situations which could be encountered in a patient study, including; different positions in the field of view, different lesion shapes, sizes and contrasts, noise-free and noisy data. Ground truth images were convolved with the perturbation-estimated PSF, and with a PSF reflecting the resolution at the centre of the field of view. Both were compared with reconstructed images and the root-mean-square error calculated to assess the accuracy of the estimated PSF. PVC was applied using Single Target Correction, incorporating the perturbation-estimated PSF. Corrected regional mean values were assessed for quantitative accuracy. RESULTS: Perturbation-estimated PSF values demonstrated dependence on the position in the Field of View and the number of OSEM iterations. A lower root mean squared error was observed when convolution of the ground truth image was performed with the perturbation-estimated PSF, compared with convolution using a different PSF. Regional mean values following PVC using the perturbation-estimated PSF were more accurate than uncorrected data, or data corrected with PVC using an unsuitable PSF. This was the case for both simple and anthropomorphic phantoms. For the simple phantom, regional mean values were within 0.7% of the ground truth values. Accuracy improved after 5 or more OSEM iterations (10 subsets). For the anthropomorphic phantoms, post-correction regional mean values were within 1.6% of the ground truth values for noise-free uniform lesions. CONCLUSION: Perturbation using a simulated point source could potentially improve quantitative SPECT accuracy via the application of PVC, provided that sufficient reconstruction iterations are used
    • …
    corecore