research

Length functions on currents and applications to dynamics and counting

Abstract

The aim of this (mostly expository) article is twofold. We first explore a variety of length functions on the space of currents, and we survey recent work regarding applications of length functions to counting problems. Secondly, we use length functions to provide a proof of a folklore theorem which states that pseudo-Anosov homeomorphisms of closed hyperbolic surfaces act on the space of projective geodesic currents with uniform north-south dynamics.Comment: 35pp, 2 figures, comments welcome! Second version: minor corrections. To appear as a chapter in the forthcoming book "In the tradition of Thurston" edited by V. Alberge, K. Ohshika and A. Papadopoulo

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/08/2021