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A negatively curved hyperbolic cone metric is called rigid
if it is determined (up to isotopy) by the support of its 
Liouville current, and flexible otherwise. We provide a 
complete characterization of rigidity and flexibility, prove that 
rigidity is a generic property, and parameterize the associated 
deformation space for any flexible metric. As an application, 
we parameterize the space of hyperbolic polygons with the 
same symbolic coding for their billiard dynamics, and prove 
that generically this parameter space is a point.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let S be a closed, oriented surface of genus at least two and let ϕ ∈ Hypc(S) be the 
isotopy class of a negatively curved hyperbolic cone metric on S; see §2.1. Hersonsky 
and Paulin [16] proved that ϕ ∈ Hypc(S) is determined by its marked length spec-
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trum. The proof follows Otal’s approach [18], associating to ϕ a Liouville (or Möbius) 
geodesic current, Lϕ which determines, and is determined by, the marked length spec-
trum, then proving that Lϕ determines ϕ; see also [7,5,12]. The analogous result for unit 
area nonpositively curved Euclidean cone metrics—also called, flat metrics—was proved 
by the second author with Bankovic in [3] extending a special case with Duchin and Rafi 
[10], and subsequently extended to all nonpositively curved Riemannian cone metrics by 
Constantine [6].

In our earlier paper with Duchin [9] we proved a stronger theorem for flat metrics: 
they are typically determined by the support of their Liouville current; see §2.3. This 
result starkly contrasts the case of nonpositively curved Riemannian metrics for which 
the Liouville current always has full support, and thus no two such metrics can be distin-
guished by supports. In general, we proved that two flat metrics have the same support 
for their Liouville currents if and only if the metrics differ by an affine deformation (up 
to isotopy), and this is possible precisely when the holonomy of the metrics have order 
at most 2; see [9] for more details.

For ϕ ∈ Hypc(S), there is no notion of an “affine deformation” which preserves Gϕ̃, the 
support of the Liouville current Lϕ. On the other hand, in Theorem 3.1 below, we show 
that if we are in the (highly non-generic) situation that (S, ϕ) admits a locally isometric 
branched covering of a hyperbolic orbifold (S, ϕ) → O and every cone point maps to an 
orbifold point of even order, then any deformation of O to another hyperbolic orbifold 
O′ lifts to a deformation ϕ′ of ϕ without disturbing the support of the Liouville current; 
i.e. so that Gϕ̃ = Gϕ̃′ . Our main theorem states that this is the only way two metrics can 
have the same support for their currents.

Current Support Theorem. Suppose ϕ1, ϕ2 ∈ Hypc(S) and Gϕ̃1 = Gϕ̃2 . Then ϕ1 = ϕ2 or 
else ϕ1, ϕ2 arise precisely as described above (that is, as in Theorem 3.1).

We reiterate that for either a flat or hyperbolic cone metric, ϕ, the generic situation is 
that Gϕ̃ determines ϕ. In the non-generic case, the dimension of the deformation space for 
flat cone metrics preserving the support is precisely 2, while for hyperbolic cone metrics, 
the dimension is still finite but can be arbitrarily large: indeed, it is parameterized by the 
Teichmüller space of the quotient orbifold produced in the proof of the Current Support 
Theorem. See the remark at the end of §6.2.

An interesting special case is described by the following, which states that when a 
cone metric has “too many cone points”, then it is necessarily rigid.

Corollary 1.1. If ϕ ∈ Hypc(S) has at least 32(g− 1) cone points (where g is the genus of 
S) then ϕ is rigid.

See §6.3 for the proof. We do not claim that the bound 32(g−1) is sharp, but one cannot 
do better than a bound which is linear in g. Indeed, by taking unbranched covers of a 
genus two surface by a surface of genus g ≥ 3 with the pull-back metric from the one 
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constructed in Example 3.2, we find flexible metrics on the surface of genus g with g− 1
cone points.

1.1. Billiard rigidity

Suppose P ⊂ H is a compact n–gon in the hyperbolic plane (assumed simply con-
nected, but not necessarily convex). We assume that P comes equipped with a labeling of 
the side by elements of A = {1, 2, . . . , n}, starting with 1 on some edge and proceeding in 
counterclockwise order. A biinfinite billiard trajectory determines a bounce sequence in 
AZ by recording the labels of the sides encountered in order, and the bounce spectrum of 
P is the set B(P ) ⊂ AZ consisting of all bounce sequences. We say that P is billiard rigid
if B(P ) determines P up to label-preserving isometry, and billiard flexible otherwise.

As an application of the Current Support Theorem, we prove a sharp symbolic-
dynamical rigidity theorem characterizing rigidity and flexibility for hyperbolic polygons. 
Our theorem is analogous to, but with quite a different conclusion from, the “Bounce 
Theorem” of our paper with Duchin, [9] where we proved that a Euclidean polygon is 
billiard flexible if and only if all its interior angles are either π

2 or 3π
2 . For hyperbolic 

polygons, the statement is slightly more technical, and requires an additional definition.
A polygon P is reflectively tiled if it can be tiled by isometric copies of a single polygon, 

called the tiles, so that any two adjacent tiles differ by reflection in their shared edge. We 
further require that each interior angle of a tile is of the form πk , for some k ∈ Z, where 
k is even if the vertex of the tile is also a vertex of P . See §7 for a detailed discussion.

Billiard Rigidity Theorem. Given hyperbolic polygons P1, P2, we have B(P1) = B(P2) if 
and only if

1. P1 is isometric to P2 by a label preserving isometry, or
2. P1, P2 are reflectively tiled and there exists a label-preserving homeomorphism 

H : P1 → P2 that maps tiles to tiles, preserving their interior angles.

The characterization of billiard flexibility is easily derived from the theorem; see §7.

Corollary 1.2. A hyperbolic polygon P is billiard flexible if and only if it is reflectively 
tiled with a non-triangular tile.

Because the statement of Billiard Rigidity Theorem is slightly technical, we note a 
couple of special cases that help to illustrate the conclusion. First, rigidity is generic; 
for example, Corollary 7.7 says that any polygon with at least one interior angle that 
is not in πQ is rigid. Moreover, Proposition 7.8 shows that an n–gon for which no 
interior angle is an even submultiple of π (i.e. of the form π

2k for some k ∈ Z), is rigid, 
while Corollary 7.9 shows that if all angles are even submultiples of π, then there is 
an (n − 3)–dimensional space of n–gons with the same bounce spectrum; namely those 
having the same corresponding interior angles. See §7.4
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For any polygon P , the bounce spectrum B(P ) consists of uncountably many biinfinite 
sequences and it is natural to wonder if one can draw the same conclusions with less 
information. The answer is yes (as in the Euclidean case) and one needs only consider 
the bounce sequences of generalized diagonals, which are compact billiard trajectories in 
P that start and end at a vertex of P . The bounce sequence of a generalized diagonal is 
a finite sequence and the set of all such, BΔ(P ), is countable. This is enough information 
to determine B(P ) and thus we have the following.

Theorem 1.3. Given polygons P1, P2 ⊂ H, we have BΔ(P1) = BΔ(P2) if and only if one 
of the two conclusions of the Billiard Rigidity Theorem holds.

The bounce spectrum of a hyperbolic polygon was previously studied by Ullmo and 
Giannoni [23] in the special case that all interior angles are acute (see also [13] and 
Nagar–Singh [17]). The primary objective in [23] was to find a set of “grammar rules” that 
completely describe B(P ) for a given polygon. There are some interesting connections 
with the Billiard Rigidity Theorem that we explain in §7.6.

1.2. Outline

Here we explain the key ideas in the proofs of the two theorems above, focusing 
primarily on the Current Support Theorem. First, given a metric ϕ ∈ Hypc(S) consider 
the pull back metric ϕ̃ on the universal cover S̃ of S. The set Gϕ̃ can be alternatively 
described as the set of pairs of endpoints at infinity of the basic ϕ̃–geodesics, that is 
those which are limits of nonsingular (disjoint from cone points) ϕ̃–geodesics; see §2.3.

Now, fix ϕ1, ϕ2 ∈ Hypc(S) and suppose Gϕ̃1 = Gϕ̃2 . Having the same set of endpoints 
translates into a correspondence between basic ϕ̃1–geodesics and basic ϕ̃2-geodesics since 
they must be bounded Hausdorff distance apart. The proof of the Current Support 
Theorem begins by successively adjusting (a representative of) ϕ2 by an isotopy until 
it and ϕ1 share some useful common features. This starts by first showing that the 
cone points are naturally “aligned” by the condition Gϕ̃1 = Gϕ̃2 using chains at infinity: 
after adjusting ϕ2 by an isotopy, the two metrics have the same set of cone points; see 
§4.1. Analyzing the way the basic geodesics partition the cone points in the universal 
covering, we explain how to adjust ϕ2 and construct a triangulation with vertices at the 
cone points so that in both metrics the triangles are isometric to triangles in H; see §4.3.

Up to this point the outline of the proof is similar to that of the analogous theorem 
for Euclidean cone metrics in [9], though there are various technical differences we must 
account for throughout. In contrast, the remainder of the proof substantially diverges 
from the Euclidean case. To prove the theorem we must either show that the interior 
angles of the triangles of the triangulation are the same in the two metrics, ensuring the 
triangles are isometric and thus ϕ1 = ϕ2, or produce a locally isometric branched cover 
of an orbifold (S, ϕ1) → O1 (with cone points mapping to even order orbifold points) 
and prove that ϕ2 is obtained by lifting a deformation of O1.
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This analysis starts by removing the common set of cone points to produce a punctured 
surface Ṡ, and taking (the metric completion of) the universal cover Ŝ of Ṡ. Using the 
triangulation, we show that the basic geodesics of the pulled back metrics ϕ̂1 and ϕ̂2 also 
have the same endpoints at infinity. Associated to ϕ̂i, for each i = 1, 2, there is a locally 
isometric developing map Di : (Ŝ, ϕ̂i) → H which is equivariant with respect to its asso-
ciated holonomy homomorphism ρi : π1(Ṡ) → PSL2(R). A delicate argument analyzing 
intersection patterns of basic geodesics is used to construct an orientation preserving ho-
momorphism h : ∂H → ∂H that conjugates ρ1 to ρ2 within the homeomorphism group of 
the circle ∂H. Furthermore, h sends the endpoints of any D1–image of a basic ϕ̂1–geodesic 
to the endpoints of the D2–image of the associated basic ϕ̂2–geodesic; see §5.2. It is by 
investigating the holonomy homomorphism image ρ1(π1(Ṡ)) (and a slightly enlarged 
group) and using the existence of the conjugating homeomorphism that we can deter-
mine whether the two metrics are the same or differ by an orbifold deformation.

Indeed, if ρ1(π1(Ṡ)) is indiscrete we show that h must in fact lie in PSL2(R) by an 
analysis of the closed, cocompact subgroups of PSL2(R); see §2.5. This implies that 
the angle between a pair of D1–developed basic ϕ̂1–geodesics and the corresponding 
D2–developed basic ϕ̂2–geodesics must agree. Applying this to extensions of the sides 
of the triangles implies that the interior angles for each triangle in the triangulation are 
the same in the two metrics, and hence we have that ϕ1 = ϕ2.

One can push this argument further using an observation from earlier in the proof: 
during the first adjustment stage, it is shown that all basic ϕ̃1–geodesics through a cone 
point in (S̃, ϕ̃1) correspond to ϕ̃2–geodesics that pass through a cone point in (S̃, ϕ̃2)
(after an adjustment, these become the same point). Passing to Ŝ, we deduce that for 
every cone point ζ of Ŝ, h “witnesses” the concurrence of the D1– and D2–images of the 
respective basic geodesics through ζ. This manifests itself in the fact that h conjugates 
the order two elliptic isometry fixing D1(ζ) to the order two elliptic isometry fixing 
D2(ζ). Taking the groups Γ0

i < PSL2(R) generated by ρi(π1(Ṡ)) together with these 
order two elliptic elements about Di(ζ), over all cone points ζ of Ŝ, we see that h
actually conjugates Γ0

1 to Γ0
2; see §6.1. Consequently, if Γ0

1 is indiscrete we again deduce, 
by the same argument as above, that h must lie in PSL2(R) and so ϕ1 = ϕ2 as before.

The only option left is that Γ0
1 and Γ0

2 are discrete. Then the quotient O0
i = H/Γ0

i is hy-
perbolic orbifolds, for i = 1, 2. By construction each Di is equivariant and hence descend 
to branched covers from (S, ϕi) → O0

i under which the cone points map to even order 
orbifold points. The homeomorphism h conjugates Γ0

1 to Γ0
2 and hence determines home-

omorphisms O0
1 → O0

2. Chasing through the diagram shows that (after another adjust-
ment) ϕ2 differs from ϕ1 by lifting this homeomorphism, completing the proof; see §6.2.

The Billiard Rigidity Theorem follows from the Current Support Theorem by an 
unfolding procedure. Roughly speaking, given a hyperbolic n–gon P , we consider a neg-
atively curved hyperbolic cone surfaces tiled by copies of P . Then “folding the tiles up” 
defines a map from the surface to P that sends each tile isometrically to P ; consequently, 
we call such a surface and metric an unfolding. A key property of an unfolding is that 
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nonsingular geodesics in the surface project to billiard trajectories, and vice versa billiard 
trajectories lift to nonsingular geodesics.

Given two hyperbolic n–gons P1 and P2, we find a common unfolding, which is a 
surface with two different hyperbolic cone metrics ϕ1 and ϕ2 so that the tilings define 
the same cell structure (the 2-cells are the tiles) and so the labelings from the polygons 
agree. When B(P1) = B(P2), we lift a common unfolding to the universal cover of 
the surface, and observe that the bounce sequence of a billiard trajectory also specifies 
(from a given starting tile) a symbolic coding of a nonsingular geodesic. In this way, 
B(P1) = B(P2) naturally implies Gϕ̃1 = Gϕ̃2 since a ϕ̃1–geodesic and ϕ̃2–geodesic passing 
through the same set of tiles forces them to remain a bounded distance apart; see §7.2.

This first part of the proof is similar to the Euclidean billiard case, but again, at this 
point the proofs diverge. Since Gϕ̃1 = Gϕ̃2 , we find a homeomorphism h : ∂H → ∂H and 
show that it conjugates the group generated by reflections in the faces of P1 to the group 
generated by reflections in the faces of P2. If h ∈ PSL2(R), by looking at the extensions 
of the geodesic sides to biinfinite geodesics and the effect of h on the endpoints, we see 
that the extension of h to an isometry of H maps P1 to P2.

Now, to determine whether h belongs to PSL2(R) we proceed similarly to the argu-
ment above. If the group R0

P1
generated by reflections in the sides of P1 together with 

the order two elliptic elements fixing the vertices is indiscrete, then h is necessarily in 
PSL2(R), and we are in case (1) of the theorem; see §7.3. If on the other hand R0

P1
is 

discrete, one can check that this group is also generated by reflections in a (typically) 
smaller polygon inside of P1. The union of the lines of reflection for this group defines 
a tiling of H for which P1 is a union of tiles. The map h sends the endpoints of all 
these lines of reflection to the endpoints of the lines of reflection for the associated group 
determined by P2. This is enough to construct a homeomorphism H → H sending tiles 
of one tiling to tiles of the other and sending P1 to P2. The interior angles of the tiles 
are preserved by this homeomorphism since h conjugates the dihedral vertex stabilizer 
in one group to an isomorphic group in the other. This essentially puts us in case (2) of 
the theorem, and completes the proof; see §7.4.

The paper is organized as follows. In §2 we introduce the notation and terminology 
used throughout the paper, describe the geodesics in S̃ and Ŝ, and discuss topological 
conjugates of subgroups of PSL2(R). §3 is devoted to proving Theorem 3.1 mentioned 
above, showing that two hyperbolic cone metrics ϕ1, ϕ2 which branch cover hyperbolic 
orbifolds (with cone points projecting to even order orbifold points) and differ by a 
lift of an orbifold deformation satisfy Gϕ̃1 = Gϕ̃2 . The normalization procedures of the 
metric ϕ2 alluded to in the outline above are explained in §4. In §5 we construct the 
homeomorphism h : ∂H → ∂H which conjugates the holonomies and is a key tool in the 
proof of the Current Support Theorem, which we prove in §6. Finally, in §7 we discuss 
hyperbolic billiards and prove the Billiard Rigidity Theorem.

Acknowledgments. We would like to thank Ben Barrett, Moon Duchin, Hugo Parlier, 
Alan Reid, and Juan Souto for useful conversations throughout the course of this work. 
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of the paper. Leininger was partially supported by NSF grant DMS-1811518 and DMS-
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2. Preliminaries

2.1. Hyperbolic cone metrics

We write H̃ypc(S) for the space of negatively curved hyperbolic cone metrics on S. 
These are metrics, locally isometric to H away from a finite, positive number of cone 
singularities with cone angles greater than 2π. We refer to the non-cone points as regular 
points. The group Homeo0(S) of homeomorphisms isotopic to the identity acts (on the 
right) on H̃ypc(S) by pullback, and we let Hypc(S) be the quotient by this action. That 
is, given ϕ, ϕ′ ∈ H̃ypc(S), declaring ϕ ∼ ϕ′ if there exists a homeomorphism f : S → S

isotopic to the identity, such that f∗(ϕ′) = ϕ, then Hypc(S) = H̃ypc(S)/ ∼ is the quotient 
of H̃ypc(S) by the equivalence relation ∼.

Remark. While we have assumed that the cone point set is nonempty, we note that 
the Current Support Theorem is trivially valid without this assumption. Indeed, for 
any nonsingular hyperbolic metric, its Liouville current has full support. Thus, any two 
nonsingular hyperbolic metrics have the same support for their Liouville currents, and 
do in fact differ by the lift of a deformation from the trivial orbifold covering of itself.

We fix a universal covering p : S̃ → S. For any reference negatively curved metric, we 
let S1

∞ be the boundary at infinity of S̃ with respect to the pull back metric. This defines 
a compactification of S̃ which is independent of the metric, up to homeomorphism that 
is the identity on S̃. In particular, S1

∞ is independent of the choice of negatively curved 
reference metric (indeed, S1

∞ is the Gromov boundary, which can be defined by any 
geodesic metric on S pulled back to S̃). For any ϕ ∈ H̃ypc(S), the metric ϕ̃ = p∗(ϕ) is 
CAT(-1), by Gromov’s link condition and the Cartan-Hadamard Theorem; see [2].

2.2. Puncturing surfaces

Suppose ϕ ∈ H̃ypc(S), let C0 = cone(ϕ) be the set of cone points for ϕ, and let 
Ṡ = S � C0 denote the punctured surface obtained by deleting the cone points. Let 
p̂ : ˜̇S → Ṡ be the universal cover and ϕ̂ = p̂∗(ϕ) the pull back metric. Since p̂ is a local 
isometry, it extends over the metric completions, and we denote the map by the same 
name:

p̂ : Ŝ → S

where Ŝ denotes the completion of ˜̇S. To describe the local behavior of this map and the 
space Ŝ near the completion points, suppose that ε > 0 is sufficiently small so that the 
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ε–neighborhood of C0 is a disjoint union of topological disks, Δ1 ∪ . . . ∪ Δk, with each 
Δj containing exactly one point ζj ∈ C0. For any component U ⊂ p̂−1(Δj − {ζj}),

p̂|U : U → Δj − {ζj}

is a universal cover of Δj − {ζj}. For such U , there is a single completion point ζ̂U that 
projects to ζj .

In fact, any non-convergent Cauchy sequence in ˜̇S projects to such a sequence in 
Ṡ, which is necessarily eventually contained in some Δj . By taking ε > 0 sufficiently 
small, we can assume that the sequence is contained in a single component U , and hence 
converges to the point ζ̂U . That is, the points ζ̂U account for all completion points. We 
write Ĉ0 = p̂−1(C0) ⊂ Ŝ for the completion points, which (by an abuse of terminology) 
we also refer to as cone points.

Note that p̂ factors through a map p̃ : Ŝ → S̃. Furthermore, there are covering actions 
of π1Ṡ and π1S on Ŝ and S̃ respectively, and a homomorphism π1Ṡ → π1S (induced by 
inclusion Ṡ → S, up to conjugation) so that p̃ is equivariant:

π1Ṡ π1S

Ŝ S̃

S.

� �
p̃

p̂
p

In what follows, when considering two metrics ϕ1, ϕ2 ∈ H̃ypc(S), we will only consider 
the space Ŝ when ϕ1 and ϕ2 have common cone point set C0 = cone(ϕ1) = cone(ϕ2). 
Under this assumption, we note that the discussion above implies that the metric comple-
tion of ˜̇S is the same for either metric ϕ̂1 or ϕ̂2. Also, with respect to either metric ϕ̂1 or 
ϕ̂2, Ŝ is CAT(-1), and in particular is Gromov hyperbolic. The identity (Ŝ, ϕ̂1) → (Ŝ, ϕ̂2)
is a quasi-isometry (in fact, after adjusting ϕ2 by an arbitrarily small homeomorphism 
(fixing C0), we may assume ϕ1 and ϕ2 are biLipschitz equivalent, and hence the same 
is true of ϕ̂1 and ϕ̂2). The boundary at infinity of Ŝ, denoted Ŝ1

∞, is thus well-defined 
and independent of the metric (in the same sense as for S̃). Moreover, any two points of 
the boundary are connected by a biinfinite geodesic. Although Ŝ1

∞ is not a circle (it is 
not even compact), it is homeomorphic to a subset of the circle in a π1Ṡ–invariant way, 
since ˜̇S is a surface.

2.3. Geodesics in S̃ and Ŝ

We suppose ϕ ∈ H̃ypc(S) throughout and let C0 = cone(ϕ). We refer to the sets 
C̃0 = p−1(C0) and Ĉ0 = p̂−1(C0) as the cone point sets of (S̃, ϕ̃) and (Ŝ, ϕ̂). By a 
ϕ̃–geodesic or ϕ̂–geodesic we will always mean a biinfinite geodesic in (S̃, ϕ̃) or (Ŝ, ϕ̂), 
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respectively. Moreover, we consider the geodesics as unparameterized, and we equip the 
space of geodesics with the quotient topology coming from the compact-open topology 
on the set of parametrized geodesics, where we forget the parametrization.

A ϕ̃–geodesic segment is a subsegment of a ϕ̃–geodesic and can be finite, half-infinite 
(i.e. a ray), or bi-infinite, and we make the analogous convention for ϕ̂–geodesic segments. 
A ϕ̃–geodesic (resp. ϕ̂–geodesic) segment is singular if its interior intersects C̃0 (resp. 
Ĉ0) and nonsingular otherwise. Note that nonsingular geodesic segments are hyperbolic 
geodesic segments. If a ϕ̃–geodesic segment η meets a cone point ζ ∈ C̃0 in the interior 
of η, then any sufficiently small disk neighborhood of ζ is divided into two half-disks 
by η which we call the sides of η near ζ (nested disks determine nested sides), and we 
note that being geodesic, the angle on each side is at least π. If a cone point ζ̂ ∈ Ĉ0 is 
encountered in the interior of a singular ϕ̂–geodesic segment, then any sufficiently small 
“disk” neighborhood (i.e. an open set U as above) is divided into three sides; on only 
one side does it make sense to measure the angle, but again that angle must be at least 
π. Finally, a nonsingular ϕ̃- or ϕ̂–geodesic segment between two cone points is called a 
saddle connection.

Observe that a ϕ̃–geodesic η has two globally defined sides since it divides S̃ into two 
components. Orienting η, and appealing to the orientation on S̃, we can refer to the two 
sides as the positive (left-hand) and negative (right-hand) sides of η. A ϕ̂–geodesic can 
have infinitely many globally defined sides, but choosing an orientation they can still be 
prescribed a sign, positive or negative. Of course, orienting a geodesic segment also gives 
rise to a well-defined sign for the sides at cone points encountered (locally), as well.

The set of distinct pairs of points in S1
∞ is denoted by

G(S̃) = S1
∞ × S1

∞ \ Δ/(x, y) ∼ (y, x)

where Δ is the diagonal in S1
∞ × S1

∞. Given a ϕ̃–geodesic η, we let ∂ϕ̃(η) ∈ G(S̃) be the 
set of endpoints on S1

∞ of γ. Since ϕ̃ is CAT(-1), this determines a homeomorphism

∂ϕ̃ : {ϕ̃–geodesics in S̃} → G(S̃).

Note that two ϕ̃–geodesics are either disjoint, meet at exactly one point where they 
transversely intersect, or coincide either in a single cone point or in a (unique maximal) 
geodesic segment. If they coincide in a segment, this is either a concatenation of saddle 
connections or an infinite ray emanating from a cone point (and the two geodesics share 
an endpoint at infinity). In the latter case we say the two geodesics are cone point 
asymptotic. We say that {x1, y1}, {x2, y2} ∈ G(S̃) link if x2, y2 /∈ {x1, y1} and x2 and 
y2 lie in different components of S1

∞ \ {x1, y1}. We say that two ϕ̃–geodesics η1 and η2
cross if their endpoints ∂ϕ̃(η1) and ∂ϕ̃(η2) link (meaning, S1

∞ \∂ϕ̃(η1) contains one point 
of ∂ϕ̃(η2) in each component). When η1 and η2 cross, they either intersect transversely 
at a point or they coincide either in a single cone point or in a concatenation of saddle 
connections, see Fig. 1. Moreover, if a pair of geodesics intersect transversely, then they 
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η1

η1

η2

η2

y2

x2
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x1

y1

η2
η1

Fig. 1. Two examples of crossing geodesics η1 and η2 with their linking endpoints ∂ϕ̃(η1) = {x1, y1} and 
∂ϕ̃(η2) = {x2, y2}.

must cross. On the other hand, a pair of geodesics may coincide in a nontrivial segment 
or cone point without crossing.

We let G(ϕ̃) denote the closure of the set of nonsingular ϕ̃–geodesics and call the 
geodesics in G(ϕ̃) the basic ϕ̃–geodesics. We define

Gϕ̃ = ∂ϕ̃(G(ϕ̃)) ⊂ G(S̃)

to be the set of all endpoints of basic geodesics. As mentioned in the introduction, 
the set Gϕ̃ is exactly the support of the Liouville current Lϕ (see [3,6]). As a notational 
reminder, when some metric is involved, we will typically include the metric as a subscript 
to denote endpoints of geodesics while it will be included in parentheses to denote the 
actual geodesics.

Similarly, we let G(ϕ̂) be the closure of the set of nonsingular ϕ̂–geodesics which we 
call basic ϕ̂–geodesics, denoting the set of their endpoints by Gϕ̂ ⊂ G(Ŝ) = Ŝ1

∞ × Ŝ1
∞ \

Δ/(x, y) ∼(y, x).
The following lemma describes a few elementary properties of basic geodesics in S̃ and 

Ŝ. For S̃, the analogous statements in the case of Euclidean cone metrics were proved in 
[3, Section 3] and for non-positively curved Riemannian cone metrics in [6, Section 5].

Lemma 2.1 (Basic geodesics). Suppose ϕ ∈ H̃ypc(S). For any basic geodesic in (S̃, ϕ̃)
that meets a cone point, it does so making angle exactly π on one side at that point. If a 
basic ϕ̃–geodesic encounters more than one cone point, then after choosing an orientation 
and ordering the cone points it meets accordingly, the sides on which the angle is π can 
change sign at most once. Consequently, the set G2

ϕ̃ of basic geodesics meeting at least 
2 cone points is countable. The same statements are true for basic geodesics in (Ŝ, ϕ̂): 
at each point ζ ∈ Ĉ0 a basic ϕ̂–geodesic encountering it makes angle exactly π, and if a 
basic ϕ̂–geodesic encounters more than one point of Ĉ0, the signs of the sides on which 
it makes angle π switch at most once.

Proof. We prove the statements for basic ϕ̃–geodesics, then describe any modifications 
necessary for the corresponding statement for basic ϕ̂–geodesics.
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Consider any η ∈ G(ϕ̃) and suppose that ζ is a cone point on η. We first prove that the 
angle is π on one side of η at ζ. Let {ηi} be a sequence of nonsingular geodesics converging 
to η, and observe that for each sufficiently large i, there is a small disk neighborhood of 
ζ which ηi intersects, and lies on one side or the other of ζ (since ηi does not contain ζ). 
Passing to a subsequence if necessary, we can assume all {ηi} are on the same side of η
in each of these neighborhoods. Since each ηi make angle π on each side of every point 
it passes through, it follows that η must make angle π at ζ on the side containing all 
ηi. For η ∈ G(ϕ̂), the argument is similar, noting that in this case (in sufficiently small 
neighborhoods) the approximating geodesics ηi must lie on the side of η making finite 
angle, which is then necessarily equal to π.

Next we assume η ∈ G(ϕ̃), and show that the side one which it makes angle π can 
change at most once. To this end, assume η passes through at least three points of C̃0, say 
ζ1, ζ2, ζ3, and that these points appear in order along η, with respect to some orientation 
on η. We suppose η makes angle π on the positive side at ζ1 and ζ3 but at the negative 
side at ζ2, and will arrive at a contradiction. As above, let {ηi} be an approximating 
sequence of nonsingular geodesics. Note that for large i we must have that ηi is on the 
positive side of η in neighborhoods of ζ1 and ζ3 while on the negative side of η in a 
neighborhood of ζ2. It follows that for large i the geodesics ηi and η contain segments 
that bound a bigon, which is impossible since the metric is CAT(-1). Since the metric ϕ̂
on Ŝ is also CAT(-1), the exact same argument works in Ŝ as well.

Finally, we explain why these facts imply that the set of basic geodesics meeting 
at least 2 cone points is countable. Every ϕ̃–geodesic meeting at least two cone points 
contains a saddle connection. Since a saddle connection is determined by its endpoints 
in C̃0, and since C̃0 is countable, there are only countably many saddle connections. For 
each saddle connection, there are only countably many basic ϕ̃–geodesics containing it: 
one that always makes angle π on the positive side, one that always makes angle π on the 
negative side, and a countable number that switch. To see that this last set is countable, 
divide into two cases, depending on whether it switches from π on the positive side to 
π on the negative side, or vice-versa, then index the cone points encountered by any 
such geodesic with an interval in Z (with one of the endpoints of the saddle connections 
being 0) and record the index of the last cone point before the switch of sides occurs. 
Therefore, the set of basic ϕ̃–geodesics containing at least two cone points is a countable 
union of countable sets, hence countable. �

We say that a geodesic segment (in either S̃ or Ŝ) is a basic segment if it is either 
nonsingular or it meets each cone point in its interior at an angle exactly π on one side and 
this side switches at most once. This name is justified because we will show below that a 
segment is basic if and only if it can be extended to a basic geodesic. In fact, we show that 
the description of basic geodesics in Lemma 2.1 actually characterizes basic geodesics:

Lemma 2.2. If η is a ϕ̃-geodesic (or ϕ̂–geodesic) which makes angle π on one side at 
every cone point it meets, and this side switches at most once, then η belongs to G(ϕ̃)
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Fig. 2. Constructing an approximation of η by ηθ, as θ → 0.

(respectively, G(ϕ̂)). Moreover, a geodesic segment is a basic segment if and only if it 
can be extended to a basic geodesic.

Proof. Let η be a ϕ̃–geodesic as in the statement (the case of ϕ̂–geodesics follow by 
almost identical arguments). We will construct a sequence of nonsingular geodesics {ηi}
converging to η, showing that η is a basic geodesic.

First suppose that η makes angle π on the same side (say the positive side) at every 
cone point it encounters. Pick any regular point x on η and let δ be a short geodesic 
segment emanating from x on the positive side of η and meeting η orthogonally. By 
taking δ short enough we can assume it contains no cone points. For every point y on 
δ let ηy be a basic geodesic through y and orthogonal to δ. Note that {ηy}y∈δ is a set 
of pairwise disjoint geodesics, since if any two intersected this would result in a geodesic 
triangle with angle sum at least π, which is impossible in a CAT(-1) metric. Hence for 
each y ∈ δ − {x}, the geodesic ηy lies on the positive side of η = ηx. Moreover, only 
countably many y gives rise to a singular ηy (since there are only countably many points 
in C̃0) and hence picking any sequence of points {yi} on δ that avoids this countable set 
and converging to x we get a sequence of nonsingular geodesics ηi = ηyi

limiting to η.
Now suppose η passes through at least two cone points and that the side at which 

it makes angle π at the cone points switches once. Assume η makes angle π on, say, 
the negative side at cone point ζ and on the positive side at cone point ξ and that 
hat η encounters ζ immediately before ξ. Let [ζ, ξ] denote the segment of η between 
the two points and let x be any regular point on [ξ, ζ]. For each θ ∈ (0, π) let ηθ be a 
geodesic that transversely intersects η at x making an angle as shown in Fig. 2. Then ηθ
is nonsingular for all but countably many directions θ, and hence picking any sequence 
{θi}, avoiding this countable set, such that θi → 0 and setting ηi = ηθi results in a 
sequence of nonsingular geodesics {ηi} converging to η.

For the second claim, let σ be a basic geodesic segment. First suppose its interior 
makes angle π on the positive side at every cone point it meets. Extend σ to a geodesic 
by making angle exactly π on the positive side at every cone point it meets. By the 
above, the resulting geodesic is a basic geodesic. Now, if σ switches once from making 
angle π on the positive side to making angle π on the negative side, extend σ forward 
by a geodesic ray making angle π on the negative side, and backward by a geodesic ray 
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making angle π on the positive side. Again by the above, the result is a basic geodesic. 
The converse follows from Lemma 2.1 and the definition of a basic geodesic segment. �

We note that, since in a neighborhood of any regular point the map p̃ : Ŝ → S̃ is an 
isometry, and since cone points are sent to cone points, any nonsingular geodesic in Ŝ
projects to a nonsingular geodesic in S̃. For the same reason, every nonsingular geodesic 
in S̃ can be lifted to a nonsingular geodesic in Ŝ. In fact, the same is true for basic 
geodesics.

Lemma 2.3. The map p̃ : Ŝ → S̃ sends basic geodesics to basic geodesics, and every basic 
geodesic in S̃ is the p̃–image of a basic geodesic in Ŝ.

Proof. Given a basic geodesic η in Ŝ, there is a sequence of nonsingular geodesics {ηi}
that converges to η. Then the sequence {p̃(ηi)} of nonsingular geodesics must converge 
to p̃(η), and so p̃(η) must be a basic geodesic in S̃.

Now let λ be a basic geodesic in S̃ that is parametrized at unit speed, and {λi} a 
sequence of nonsingular unit speed geodesics converging to λ. We can assume {λi} is 
one of the sequences constructed in the proof of Lemma 2.2 above. In particular, it is 
a sequence of nonsingular geodesics that are either pairwise disjoint or all coincide in a 
unique (regular) point. In the latter case, let x be this point (which by construction is a 
point on λ) and in the former case, there is a common perpendicular geodesic segment 
to {λi} and λ and x is its intersection with λ.

Let U be an evenly covered open disk containing x and no cone points. Consider the 
tail of the sequence {λi} that intersects U . Dropping everything but the tail and re-
indexing, every geodesic in the sequence {λi} intersects U . Choosing base points in U , 
lift the geodesics {λi} to nonsingular geodesics {ηi} in Ŝ. We claim that {ηi} converges 
to a geodesic η in Ŝ. If this were true, η would be a basic geodesic since it is the limit 
of a sequence of nonsingular geodesics, and p̃(η) = λ. To show that {ηi} converges, 
we first recall that convergence in the compact open topology is equivalent to uniform 
convergence on compact sets.

Since {λi} converges in the compact open topology, {λi} must converge uniformly on 
compact sets. Given a compact set K ⊆ R, there must be a ball BK containing U that 
contains ∪iλi(K). If BK contains cone points, there are geodesic rays emanating from 
the cone points to ∂BK that do not intersect ∪iλi and do not intersect each other.

In the case where λi intersect in a point x, these rays can be chosen as follows. 
Connect x to each cone point by a geodesic segment, and then take the rays to be a 
geodesic continuation of these segments emanating from the cone points. No two can 
intersect because if they did, a geodesic bigon would be created with vertices x and the 
intersection point.

In the case where λi are disjoint, let γ be the common perpendicular geodesic segment 
to {λi} and recall x = λ ∩ γ. The rays can be found as follows. Take the perpendicular 
geodesic segments from γ to each cone point, and then take the rays to be a geodesic 
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continuation of these segments emanating from the cone points. No two can intersect 
because if they did, a geodesic triangle would be formed by the intersecting geodesics 
and γ with angle sum larger than π.

Let the union of the rays be called R. Then let B := BK \ R. We have chosen R so 
that B contains no cone points, and so that B is simply connected. Therefore, B can be 
lifted homeomorphically and intrinsically isometrically to a bounded compact set in Ŝ
containing ∪iηi(K). Therefore {ηi} converges uniformly on K as desired. �

We end this subsection with an observation about the sets Gϕ̃ and Gϕ̂ of endpoints of 
basic geodesics in S̃ and Ŝ. To prove the Current Support Theorem we will be interested 
in metrics ϕ1, ϕ2 for which Gϕ̃1 = Gϕ̃2 , and we will see that this is equivalent to the 
assumption that Gϕ̂1 = Gϕ̂2 (up to replacing ϕ2 with an equivalent metric). We prove 
one implication here; see Lemma 5.1 for the converse.

Lemma 2.4. Let ϕ1, ϕ2 ∈ H̃ypc(S) with C0 = cone(ϕ1) = cone(ϕ2). If Gϕ̂1 = Gϕ̂2 then 
Gϕ̃1 = Gϕ̃2 .

Proof. Let η1 ∈ G(ϕ̃1) be a basic ϕ̃1–geodesic. Then there exists a basic ϕ̂1–geodesic 
η̂1 such that p̃(η̂1) = η1. Since Gϕ̂1 = Gϕ̂2 there exists a basic ϕ̂2–geodesic η̂1 such 
that the Hausdorff distance (with respect to, say, ϕ̂1) between η̂1 and η̂2 is bounded. 
Since p̃ maps basic geodesics in Ŝ to basic geodesics in S̃ we have that η2 = p̃(η̂2) is 
a basic ϕ̃2–geodesic. Moreover, since p̃ is 1-Lipschitz, we must have that η1 = p̃(η̂1)
and η2 = p̃(η̂2) stay bounded Hausdorff distance apart, and hence must have the same 
endpoints. We have shown that Gϕ̃1 ⊂ Gϕ̃2 . The opposite inclusion follows by a symmetric 
argument. �
2.4. Developing and holonomy

As all along, suppose ϕ ∈ H̃ypc(S) and let C0 = cone(ϕ) ⊂ S be the set of cone 

points, ϕ̂ the pull back metric p̂∗(ϕ) and Ĉ0 = p̂−1(C0) ⊂ Ŝ. Since ˜̇S is simply connected 

and ϕ̂ is locally isometric to the hyperbolic plane, there is a developing map ˜̇S → H: 
an orientation preserving local isometry, unique up to post-composing by an element of 
PSL2(R). This map also extends to the metric completion, which we continue to call a 
developing map and denote it by

D : Ŝ → H.

Observe that for every basic geodesic η ∈ G(ϕ̂), D(η) is a bi-infinite geodesic in H.

Lemma 2.5. Fix any ϕ ∈ H̃ypc(S). Then for any point ζ ∈ Ŝ, any geodesic in H through 
D(ζ) is the D–image of a basic ϕ̂–geodesic in Ŝ through ζ. In particular, D is surjective 
and every geodesic in H is the D–image of a basic ϕ̂–geodesic.
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Proof. First suppose ζ is any point in Ŝ� Ĉ0. For every unit tangent vector in v ∈ T 1
ζ Ŝ

we can find a basic ϕ̂–geodesic ηv through ζ tangent to v (see Lemma 2.2). Observe that 
the derivative dDζ is an isometry, and that D(ηv) is a geodesic through D(ζ) tangent 
to dDζ(v). Since dDζ is an isometry, every geodesic in H through D(ζ) is the image of 
some basic ϕ̂–geodesic in Ŝ. Essentially the same argument works if ζ ∈ Ĉ0: in this case, 
however, the derivative dDζ restricted to the unit vectors T 1

ζ Ŝ in the tangent cone TζŜ

at ζ maps onto T 1
D(ζ)(H) (in fact, the restriction of the derivative dDζ : T 1

ζ Ŝ → T 1
D(ζ)H

is the universal cover). This proves the first claim of the lemma. The second claim is 
immediate from the first. �

Let K ⊆ Ŝ1
∞ be the subset of the Gromov boundary of Ŝ consisting of end points of 

a basic ϕ̂–geodesics. We extend the map D to the union

D̄ : Ŝ ∪ K → H,

so that D̄(K) ⊂ ∂H. To see how this is done, let k ∈ K, and define D̄(k) to be the 
forward end point of D(η) where η is any oriented basic ϕ̂–geodesic whose forward end 
point is k. This is well-defined because any two forward asymptotic basic ϕ̂–geodesics 
will have forward asymptotic D–images.

Corollary 2.6. The restriction D̄|K : K → ∂H is surjective.

Proof. For every y ∈ ∂H one can choose an oriented geodesic η′ that has y as its forward 
end point. By Lemma 2.5, there is a basic ϕ̂–geodesic η with D(η) = η′. Then D̄(k) = y

where k is the forward end point of η. �
Precomposing D with any covering transformation γ ∈ π1Ṡ acting on Ŝ, gives another 

developing map to H that must therefore differ from D by post-composing with an 
element in PSL2(R) denoted ρ(γ). The assignment γ 
→ ρ(γ) thus defines the holonomy 
homomorphism ρ : π1Ṡ → PSL2(R). That is, ρ is defined by

D(γ · x) = ρ(γ) ·D(x),

for all x ∈ Ŝ and γ ∈ π1Ṡ. We let Γ = ρ(π1Ṡ), and note that since D is ρ–equivariant, it 
descends to a continuous map q : S → O = H/Γ making the following diagram commute:

Ŝ
D

p̂

H

S
q

O.
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Here O = H/Γ is just the quotient topological space, unless Γ is discrete, in which case 
it admits the structure of a hyperbolic 2–orbifold. In any case, we note that since S is 
compact and q is continuous, O is compact. That is, Γ is a cocompact subgroup.

2.5. Topological conjugacy

Recall that the action of Isom(H) on H extends uniquely to an action on H = H∪∂H. 
We will implicitly use this extension without further comment, and likewise for the 
orientation preserving index two subgroup PSL2(R) < Isom(H).

Given two subgroups G1, G2 < Isom(H), we say that the homeomorphism h : ∂H →
∂H topologically conjugates G1 to G2 if for all γ1 ∈ G1 there exists γ2 ∈ G2 such that

hγ1h
−1(x) = γ2(x)

for all x ∈ ∂H. Given two hyperbolic cone metrics ϕ1 and ϕ2 with Gϕ̃1 = Gϕ̃2 and the 
corresponding holonomy homomorphisms ρ1 and ρ2, we will see in the course of the proof 
that Γ1 = ρ1(π1Ṡ) and Γ2 = ρ2(π1Ṡ) are topologically conjugate. In fact, we will prove 
that the homomorphisms are topologically conjugate (see Proposition 5.4), meaning that 
there is a homeomorphism h : ∂H → ∂H so that for all x ∈ ∂H and γ ∈ π1Ṡ,

h(ρ1(γ) · x) = ρ2(γ) · h(x).

In this case we will say that h topologically conjugates ρ1 to ρ2.
Part of the proof of the Current Support Theorem involves proving that quite often 

the homeomorphism h which topologically conjugates ρ1 to ρ2 is in fact in PSL2(R). 
The following will be an important ingredient.

Proposition 2.7. Suppose G1, G2 are two cocompact subgroups of Isom(H). If there exists 
an orientation preserving homeomorphism h : ∂H → ∂H topologically conjugating G1 to 
G2, then either the groups are discrete or h ∈ PSL2(R).

Proof. First note that h must topologically conjugate the orientation preserving sub-
group of G1 to the orientation preserving subgroup of G2. Since discreteness of a group 
is equivalent to discreteness of its orientation preserving subgroup, we may assume that 
G1 and G2 are in PSL2(R).

For i = 1, 2 let Ḡi denote the closure of Gi and let Ḡid
i be the connected component of 

Ḡi containing the identity. Since h conjugates G1 to G2 it also topologically conjugates 
Ḡ1 to Ḡ2 and thus Ḡid

1 to Ḡid
2 . Also, since Ḡid

i is a closed subgroup of PSL2(R) it is a 
Lie subgroup by the closed subgroup theorem. It follows from general Lie theory (by the 
bijection between closed connected subgroups of PSL2(R) and subalgebras of sl2(R)) that 
Ḡid

1 , as well as Ḡid
2 , must be one of the following groups up to conjugation in PSL2(R):



V. Erlandsson et al. / Advances in Mathematics 409 (2022) 108662 17
• T =
{(

1 t

0 1

)∣∣∣∣∣ t ∈ R

}
• PSO(2)

• U =
{(

s t

0 1
s

)∣∣∣∣∣ s, t ∈ R, s > 0
}

= Stab{∞} • PSL2(R)

• D =
{(

s 0
0 1

s

)∣∣∣∣∣ s > 0
}

= Stab{0} ∩ Stab{∞} • {id}

Note that if Ḡid
1 = {id} then G1, and therefore also G2, is discrete. So suppose 

Ḡid
1 , Ḡid

2 are non-trivial. Using the facts that γ ∈ Ḡid
1 fixes p ∈ ∂H if and only if 

hγh−1 ∈ Ḡid
2 fixes h(p) and that the five non-trivial groups in the above list can be 

distinguished by considering fixed points sets and point stabilizers, we see that Ḡid
1 and 

Ḡid
2 are PSL2(R)–conjugate to the same group. Hence, by composing h with an element 

in PSL2(R) we can assume that Ḡid
1 = Ḡid

2 and is one of the above non-trivial groups. 
Now, conjugation by h defines an orientation preserving continuous automorphism of 
Ḡid

1 :

ρ : Ḡid
1 → Ḡid

1 , γ 
→ hγh−1.

Below we will see that in all cases except Ḡid
1 = D this forces h to be an element of 

PSL2(R).

Case 1: Suppose that Ḡid
1 ∈ {T, U, PSL2(R)} and identify ∂H with R ∪ {∞}. We can 

assume h fixes infinity: this is necessarily the case if Ḡid
1 ∈ {T, U} and if Ḡid

1 = PSL2(R)
we can further compose h with an element of PSL2(R) so that it is true. Note that 
in all cases T < Ḡid

1 and h must conjugate T to itself (again by considering the fixed 
point sets). That is, ρ|T defines an orientation preserving continuous automorphism of 
T . Each element in T corresponds to a translation γt : x 
→ x + t for some t ∈ R and, 
by identifying T with R through the identification γt 
→ t, ρ gives rise to an orientation 
preserving continuous automorphism of R. Any such automorphism is of the form t 
→ λt

for some fixed λ > 0. Hence there exists λ �= 0 such that ρ(γt) = γλt for all γt ∈ T and 
letting p = h(0) �= ∞ we have for each t ∈ R,

h(t) = h(γt(0)) = hγth
−1(p) = ρ(γt)(p) = γλt(p) = λt + p.

Hence h is in PSL2(R).

Case 2: Suppose Ḡid
1 = PSO(2) and identify ∂H with the circle S1. By also identifying 

PSO(2) with S1 (by sending each element to its angle of rotation) we have that ρ :
PSO(2) → PSO(2) induces an orientation preserving continuous automorphism of S1. 
The only such automorphism is the identity. It follows that hγh−1 = γ for all γ ∈ PSO(2), 
i.e. h commutes with every rotation. Therefore h is a rotation itself, and in particular, h
is in PSL2(R).



18 V. Erlandsson et al. / Advances in Mathematics 409 (2022) 108662
Case 3: Suppose Ḡid
1 = D. In fact, we will show that this cannot happen due to cocom-

pactness of G1. Suppose Ḡ1 \D �= ∅ and let γ ∈ Ḡ1 \D. Then γ /∈ Stab{0} ∩ Stab{∞}, 
but γḠid

1 γ−1 = Ḡid
1 = D = Stab{0} ∩Stab{∞}. Hence we must have that γ(0) = ∞ and 

γ(∞) = 0, i.e. γ ∈ Stab{0, ∞}. It follows that Ḡ1 = Stab{0, ∞} =
〈
D,

(
0 −1
1 0

)〉
=

D′. Hence either Ḡ1 = D or Ḡ1 = D′. However, neither D nor D′ is cocompact. To see 
this, set

Wn =
{

(x, y) | y >
|x|
n

}
and note that {Wn | n ∈ N} is an open cover of H (in the upper half space model) which 
descends to an open cover of both H/D and H/D′ with no finite subcover. However G1, 
and hence also Ḡ1, is cocompact giving a contradiction. �

We note that Proposition 2.7 above gives no information about the conjugating home-
omorphism h when the groups are discrete. However, in a very special case of discrete 
groups we can also conclude that h is in PSL2(R), as the lemma below shows. Recall that 
a triangle group is a discrete subgroup of Isom(H) having a triangle Δ as its fundamen-
tal domain and such that it is generated by reflections in the sides of Δ. By a Fuchsian 
triangle group we mean the orientation preserving subgroup of a triangle group.

Lemma 2.8. Suppose G1, G2 < PSL2(R) and that there exists an orientation preserving 
homeomorphism h : ∂H → ∂H conjugating G1 to G2. If G1 is a Fuchsian triangle group, 
then h ∈ PSL2(R).

Proof. The Douady-Earle extension [8] extends any self-homeomorphism of ∂H to a self-
homeomorphism of the closure H of the hyperbolic plane in an equivariant way: pre- or 
post-composing the extension with an element of PSL2(R) is the same as first pre- or 
post-composing the homeomorphism with this element and then extending the resulting 
homeomorphism. Let h̄ : H → H be the Douady-Earle extension of h. The equivariance 
property implies that h̄γ = ρ(γ)h̄ for all γ ∈ G1, where ρ : G1 → G2 is the isomorphism 
γ 
→ hγh−1 induced by conjugation by h. It follows that h̄ descends to a homeomorphism 
O1 → O2 between the orbifolds Oi = H/Gi. However, O1 is a triangle orbifold—which 
has a trivial Teichmüller space—and hence the orbifold deformation must be isotopic to 
an isometry. It follows that the boundary map h is the extension of an isometry and 
hence an element of PSL2(R) (in fact, so is h̄ by construction). �
3. Deformations

Here we prove that the construction briefly described in the introduction does indeed 
yield examples with the desired properties. Specifically, we prove the following.
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ξ

q

P1 P2

P3

P4

Fig. 3. A genus 2 surface obtained by identifying opposite sides admits an obvious order-eight symmetry, and 
ρ is its order-four square. The branched cover q : S → S/〈ρ〉 is branched over the four points P1, P2, P3, P4, 
and branches at all the points indicated on the octagon, which are identified in S to 6 points. We consider 
S/〈ρ〉 as a hyperbolic orbifold with P1, P2, P3, P4 as orbifold points of orders 2, 2, 2, 4, respectively.

Theorem 3.1. Suppose ϕ1 ∈ H̃ypc(S), q : (S, ϕ1) → O1 is a locally isometric branched 
covering of an orbifold with q(cone(ϕ1)) ⊂ E1, the even order orbifold points. Then for 
any (orbifold) homeomorphism F : O1 → O2, the metric ϕ2 obtained by pulling back the 
hyperbolic metric by F ◦ q has Gϕ̃1 = Gϕ̃2 (in fact, Gϕ̂1 = Gϕ̂2). If F is not orbifold 
isotopic to an isometry, then ϕ1 � ϕ2.

Before we begin the proof, we provide an example exhibiting the behavior in this 
theorem.

Example 3.2. Let S be a genus 2 surface, which we view as an octagon with opposite 
sides identified. There is an order eight rotational symmetry, and we let ρ : S → S denote 
its square, which thus has order four. The quotient S/〈ρ〉 is a sphere, and the quotient 
map q : S → S/〈ρ〉 is a branched cover. The center of the octagon, ξ ∈ S, projects to a 
single point P1 ∈ S/〈ρ〉, and q is locally four-to-one near that point. The midpoints and 
vertices of the octagon account for the rest of the branch points. The midpoints define 
four points of S near which q is locally two-to-one, mapping to two points we call P2
and P3, and the vertices define a single point of S near which q is locally four-to-one, 
mapping to a single point we call P4; see Fig. 3.

Now, if we were to impose a hyperbolic orbifold structure on S/〈ρ〉 so that 
P1, P2, P3, P4 were orbifold points with orders 4, 2, 2, 4, respectively, then the pull back 
metric via q would be an honest hyperbolic structure and q would be an orbifold cov-
ering map. Instead, we make S/〈ρ〉 into a hyperbolic orbifold O1 so that the orders of 
P1, P2, P3, P4 are 2, 2, 2, 4, instead. Pulling back the metric via q now gives S a hyperbolic 
cone metric ϕ1 on S so that the cone angle of ξ is 4π, and q is a branched cover. We 
may deform this hyperbolic orbifold by a homeomorphism to another hyperbolic orbifold 
F : O1 → O2, and we obtain a new hyperbolic cone metric ϕ2 by pulling this metric back 
via F ◦ q. According to Theorem 3.1, Gϕ̃1 = Gϕ̃2 .

Delaunay cell decompositions provide a convenient tool for analyzing hyperbolic orb-
ifolds (and elsewhere below), and so we recall their construction in a special case of 
interest for us. Let G < PSL2(R) be a discrete, cocompact subgroup and assume that it 
contains an even order elliptic element. Let Ẽ ⊂ H denote the G–invariant set of fixed 
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points of elliptic elements of even order. The associated Delaunay cell decomposition
Δ̃(Ẽ) is the unique G–invariant cell decomposition of H whose 2–cells are compact, con-
vex polygons with vertices in Ẽ characterized by the property that their circumscribing 
circles contain no points of Ẽ in their interiors and so that each 2–cell is the convex hull 
of its vertices which are all contained in its circumscribing circle; see e.g. [4]. We collect 
some observations about this in the next lemma.

Lemma 3.3. Suppose G < PSL2(R) is a cocompact discrete subgroup containing an even 
order elliptic element and Ẽ is the set of fixed points of even order elliptic elements. 
Then

1. The 1–skeleton Δ̃(Ẽ)(1) is a G–invariant union of biinfinite geodesics through Ẽ.
2. If H < G is a nontrivial, maximal, cyclic subgroup, and H has odd order, then H

fixes a point in the interior of a 2–cell of Δ̃(Ẽ). Moreover, each 2–cell contains at 
most one elliptic fixed point in its interior.

Note in condition 2, since the even order elliptic elements fix vertices, any elliptic 
fixed point in the interior of a 2–cell is necessarily the fixed point of an odd order elliptic 
subgroup.

Proof. Δ̃(Ẽ)(1) is a G–invariant union of geodesic segments. Given any ζ ∈ Ẽ there is a 
unique elliptic element τζ ∈ G of order two fixing ζ. For any edge e of Δ̃(Ẽ)(1) having 
ζ as an endpoint, τζ(e) is also an edge having ζ as an endpoint, and together e ∪ τζ(e)
is a geodesic segment (because it makes angle π on both sides at ζ). Applying the same 
reasoning at the other endpoints of e and τζ(e), and repeating recursively, we see that 
the unique biinfinite geodesic containing e is a union of edges of Δ̃(Ẽ), proving the first 
statement.

For the second statement, observe that the unique fixed point ξ cannot be in the 
1–skeleton. To see this, note first that if ξ were a vertex, then H would contain an even 
order element, and hence |H| would be even, a contradiction. On the other hand, if ξ
were on the interior of an edge e, then by G–invariance of Δ̃(Ẽ), H · e would consist 
of more than one edge containing ξ, meaning that ξ is a vertex, another contradiction. 
Therefore, ξ is necessarily in the interior of some 2–cell σ. Since H fixes ξ, it fixes σ, 
and hence the (unique) circumcircle of σ is invariant by H and thus has ξ as its center. 
Any other elliptic subgroup with a unique fixed point in the interior of H must also have 
its fixed point as the center of this circumcenter, and hence is contained in H. That is, 
there is a unique elliptic fixed point in the interior of σ, as required. �

We will use the Delaunay cell structure to construct maps from H to itself. To describe 
the construction of the maps, we first recall that given any two k–simplices σ1, σ2 ∈ H

and a bijection between the vertices σ(0)
1 → σ

(0)
2 , there is a natural way of extending this 

to a map σ1 → σ2 as follows. In the hyperboloid model, the vertices on the hyperboloid 
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represent linearly independent vectors and the bijection between the vertices of σ1 and 
σ2 determines a linear isomorphism between their respective spans. Restricting this map 
to the simplex σ1 and radially projecting back to the hyperboloid defines the canonical 
map σ1 → σ2 extending the bijection on the vertices. We observe that (1) pre- and post-
composing a canonical map with isometries of H is again a canonical map, and (2) the 
restriction of a canonical map to a face is again a canonical map (cf. [20, Section 11.4]).

Next suppose T1, T2 are geometric triangulations of the hyperbolic plane, a pair of hy-
perbolic orbifolds, or hyperbolic (cone) surfaces: that is, these are Δ–complex structures 
(in the sense of [14]) so that each triangle of either structure admits a locally isometric 
parameterization by a geodesic triangle in H. A cellular homeomorphism is a canoni-
cal map if its restriction to each simplex of T1 is a canonical map to a simplex of T2; 
or more precisely, the lift via the locally isometric parameterizations of the restriction 
to each simplex is a canonical map. Every cellular homeomorphism is isotopic through 
cellular maps to a canonical map—indeed, it is straightforward to construct the isotopy 
inductively over the skeleta.

Lemma 3.4. Let G1, G2 < PSL2(R) be two discrete, cocompact groups, containing even 
order elliptic elements, and ρ : G1 → G2 an isomorphism. If Ẽ1, Ẽ2 ⊂ H are the sets 
of even order elliptic fixed points, then there is a G2–invariant cell structure Δ̃2 with 
Δ̃(0)

2 = Ẽ2 and a ρ–equivariant cellular homeomorphism F̃ : (H, Δ̃1) → (H, Δ̃2) where 
Δ̃1 = Δ̃(Ẽ1). Moreover, Δ̃2 satisfies the same conclusions as in Lemma 3.3.

In fact, there are subdivisions of the cell structures to triangulations whose vertex set 
is the set of all elliptic fixed points so that the map is an equivariant canonical map. The 
descent F : H/G1 → H/G2 of F̃ is likewise a canonical map with respect to geometric 
triangulations that have exactly one edge incident to each odd-order orbifold point.

Proof. Set Δ̃1 = Δ(Ẽ1). By Lemma 3.3 part 1, there is a set Θ1 of biinfinite geodesics 
so that

Δ̃1 =
⋃

η∈Θ1

η.

For any ζ ∈ Δ̃(0)
1 there is a maximal elliptic subgroup E1(ζ) < G1 of even order, fixing 

ζ. Let

Θ1(ζ) = {η ∈ Θ1 | ζ ∈ η}

and observe that Θ1(ζ) is E1(ζ)–invariant.
The isomorphism ρ is given as a topological conjugacy by a homeomorphism

h : ∂H → ∂H,

since the isomorphism is a quasi-isometry and thus extends to an equivariant homeomor-
phism of the boundaries at infinity. The homeomorphism h defines a straightening map 
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η 
→ h∗(η) that sends any biinfinite geodesic η to the unique geodesic with endpoints 
h(∂η). Since h is ρ–equivariant, so is h∗. We note that since h is a homeomorphism, two 
geodesics η, η′ intersect in H if and only if the geodesics h∗(η) and h∗(η′) intersect as 
well. This is because h must preserve the linking (or lack thereof) of ∂η and ∂η′.

We will define F̃ inductively over the skeleta, and in the process, we define the cell 
structure Δ̃2. For any vertex ζ ∈ Δ̃(0)

1 , we define F̃ (ζ), to be the unique fixed point of 
ρ(E1(ζ)) < G2. By construction, the restriction of F̃ to Δ̃(0)

1 is ρ–equivariant. We claim 
that for any ζ ∈ Δ̃(0)

1 , we have

F̃ (ζ) ∈
⋂

η∈Θ1(ζ)

h∗(η).

To see this, let τζ ∈ E1(ζ) be the unique element of order 2, and note that τζ(η) = η for 
all η ∈ Θ1(ζ), or for any geodesic passing through ζ. Since ρ is induced by conjugation 
by h : ∂H → ∂H, restricting to ∂H we have

τF̃ (ζ) = ρ(τζ) = h ◦ τζ ◦ h−1.

Therefore, for any η passing through ζ, we have

τF̃ (ζ)(∂h∗(η)) = τF̃ (ζ)(h(∂η)) = h(τζ(h−1(h(∂η)))) = h(τζ(∂η)) = h(∂η) = ∂h∗(η). (1)

That is, h∗(η) is invariant by τF̃ (ζ) and consequently F̃ (ζ) is on h∗(η), as required.
For every edge e of Δ̃1 connecting a pair of vertices ζ, ζ ′ ∈ Δ̃(0)

1 , define F̃ to send 
e by the canonical map to the geodesic segment between F̃ (ζ) and F̃ (ζ ′). We observe 
that if η ∈ Θ1 is the unique geodesic containing e, then h∗(η) contains F̃ (e). Moreover, 
h∗(η) preserves the order of the vertices along η. To see this, orient η and suppose that 
ζ, ζ ′ ∈ η such that ζ is encountered before ζ ′ along η with respect to this orientation. 
Let τζ , τζ′ ∈ G1 be order two elliptic elements fixing ζ, ζ ′ respectively. Note that τζ and 
τζ′ both fix η (but interchange its endpoints) and the hyperbolic element τζ′ ◦ τζ has 
η as its axis and translates along it in the positive direction; see Fig. 4. It follows that 
ρ(τζ′ ◦ τζ) has h∗(η) as its axis and translates along it in the positive direction. Since 
ρ(τζ′ ◦ τζ) = ρ(τζ′) ◦ ρ(τζ) and ρ(τζ) and ρ(τζ′) are elliptic elements fixing F̃ (ζ) and 
F̃ (ζ ′) it follows that F (ζ) is encountered before F (ζ ′) along h∗(η) and so the order is 
preserved. In particular, F̃ maps each η ∈ Θ1 to h∗(η) by a map which is the canonical 
map on each segment between consecutive vertices of Δ̃1. For any two geodesics η, η′, we 
have η ∩ η′ = ∅ if and only if h∗(η) ∩ h∗(η′) = ∅ and it follows that F̃ is injective on the 
1–skeleton Δ̃(1)

1 . Since the map on the zero–skeleton is ρ–equivariant and the maps on 
the edges are canonical maps, it follows that F̃ is a ρ–equivariant homeomorphism onto 
its image. Consequently, F̃ (Δ̃(1)

1 ) is the 1–skeleton of a cell structure Δ̃2 on the image.
Evidently, Δ̃2 has property (1) of Lemma 3.3. Because of this ρ–equivariance, F̃

preserves the cyclic ordering of edges incident to each vertex. This implies that cycles 
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η

ζ ζ′

τζ τζ′

Fig. 4. The composition of τζ and τζ′ is a hyperbolic isometry with axis η.

ξ

σ

subdivide

Fig. 5. Subdividing a 2–cell σ containing the fixed point ξ of a maximal cyclic subgroup H1 < G1 of order 
k = 3 in its interior. In this example, σ is the 9–gon on the left. The subdivision is as shown on the right.

that bound a 2–cell in Δ̃1 are sent to cycles that bound a 2–cell in Δ̃2. This suggests 
how we may extend F̃ to a map on all of H. The details of this follow shortly.

To see that property (2) also holds, we note that the boundary of any 2–cell contain-
ing an elliptic fixed point in its interior is sent to the boundary of a 2–cell of Δ̃2 by 
ρ–equivariance, and that this defines a bijection between the 2–cells containing elliptic 
fixed points in their interiors. We also note that each 2–cell of Δ̃2 is a convex polygon: the 
1–skeleton is a union of biinfinite geodesics and so the interior angles are all less than π.

Finally, we subdivide each Δ̃i to triangulations Δ̃′
i as follows. For each non-triangular 

2–cell of Δ̃1 not containing an elliptic fixed point in its interior, we note the interior is 
mapped disjoint from itself by any nontrivial element of G1, and so the same is true for 
the corresponding 2–cell of Δ̃2. We subdivide the union of all such 2–cells of Δ̃1 in any 
G1–invariant way, without introducing new vertices, so that each new 1–cell is a geodesic 
segment. Convexity of the 2–cells of Δ̃2 implies that there is a G2–invariant subdivision of 
2–cells not containing elliptic fixed points in their interiors so that F̃ extends to a cellular 
homeomorphism on the subdivision. Finally, for each 2–cell σ of Δ̃1 that contains in its 
interior the fixed point ξ of some maximal, odd order elliptic subgroup H1 < G1, first 
pick a vertex of v of σ and begin the subdivision by connecting consecutive vertices of 
the orbit H1 ·v (if they are not already connected by an edge), doing so in a G1–invariant 
way. The cell σ now contains an H1–invariant k–gon with ξ in its interior and k polygons 
permuted by H1, where k = |H1|, unless σ was already a k–gon. Now we cone off the 
k–gon to ξ and subdivide the remaining polygons in a G1–invariant way. See Fig. 5.
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We have thus subdivided Δ̃1 to a G1–invariant triangulation Δ̃′
1, and the ρ–equivariant 

homeomorphism F̃ |Δ̃1
, together with the convexity of the 2–cells of Δ̃2 determines an 

associated subdivision to a triangulation Δ̃′
2 so that F̃ |Δ̃1

extends to a canonical map 
with respect to Δ̃′

1 and Δ̃′
2. The properties of the descent to the orbifolds have been

built into the definition, completing the proof. �
We will also need the following property of isomorphic, cocompact, discrete groups 

G1, G2 as in Lemma 3.4.

Lemma 3.5. Suppose G1, G2 are any two cocompact, discrete groups containing even order 
elliptic elements, ρ : G1 → G2 is an isomorphism given by conjugation by h : ∂H → ∂H, 
and suppose

F̃ : (H, Δ̃1) → (H, Δ̃2)

is the cellular homeomorphism from Lemma 3.4. Then for any biinfinite geodesic η in 
H, η nontrivially intersects a k–cell σ of Δ̃(Ẽ1) if and only if the straightening h∗(η) of 
F̃ (η) nontrivially intersects F̃ (σ).

Proof. The fact that the lemma holds for vertices ζ ∈ Δ̃(0)
1 = Ẽ1 and geodesics η that 

intersect ζ follows immediately from (1) (the only thing being used in that argument 
was that ζ was a point on η).

Now we show that the lemma holds for an edge e. By the previous paragraph, it 
suffices to show that η intersects the interior of e if and only if h∗(η) intersects the 
interior of F̃ (e). For this, observe that η intersects the interior of e if and only if there 
are geodesics η+ and η− through the endpoints ζ+ and ζ− of e, respectively, so that 
η is in the subset of H bounded by η+ and η−. Since this configuration of η, η−, η+ is 
determined by the endpoints on ∂H, it follows that η is in the subset of H bounded by 
η+ and η− if and only if h∗(η) is contained in the subset of H bounded by h∗(η+) and 
h∗(η−), and this happens (for some η+, η−) if and only if h∗(η) intersects the interior of 
F̃ (e) (since h∗(η+) and h∗(η−) contain the endpoints F̃ (ζ+) and F̃ (ζ−)).

Since a geodesic that intersects a 2–cell must also intersect its boundary, the case of 
0–cells and 1–cells implies the case of 2–cells. This observation completes the proof. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose G1, G2 < PSL2(R) are two cocompact discrete groups 
with quotient orbifolds pi : H → Oi = H/Gi, and suppose that F : O1 → O2 is a home-
omorphism. We also let Ei ⊂ Oi be the even order orbifold points, so that pi(Ẽi) = Ei.

Now suppose q1 : (S, ϕ1) → O1 is a locally isometric branched cover of the orbifold, 
branched only over even order orbifold points. Let q2 = F ◦ q1 : S → O2 be the compo-
sition, and ϕ2 be the pull back of the hyperbolic metric on O2 (so that with respect to 
ϕ2, q2 is a locally isometric branched cover).
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The homeomorphism F : O1 → O2 induces an isomorphism F∗ : G1 → G2. Lemma 3.4
produces a homeomorphism O1 → O2 inducing F∗ : G1 → G2 that is isotopic to F (by 
the Dehn-Nielsen-Baer Theorem). Therefore, by applying an isotopy if necessary, we 
may assume that F is the homeomorphism from Lemma 3.4 (the isotopy lifts to S, and 
thus changing F in this way results in a metric equivalent to ϕ2). For i = 1, 2, we let Δ̃i

be the cell structures of H from that lemma, and Δi the corresponding cell structures 
on Oi, for i = 1, 2. We pull these cell structures back to cell structures Λ = Λ1 = Λ2 on 
S. Each 2–cell of Λ is a(n immersed) geodesic polyon with respect to either metric ϕi, 
whose interior is embedded. The restriction of qi to (the interior of) each such polygon is 
either a locally isometric homeomorphism, or else it is a k-to-1 orbifold quotient, where 
k is an odd integer, the order of the orbifold point in the image of the interior. This is 
perhaps easiest to see by lifting these cell structures back to cell structure Λ̂ on Ŝ, which 
we can view as lifting the cell structures Δ̃i by the developing maps Di : (Ŝ, ϕ̂i) → H

(note that D2 = F̃ ◦D1).
Next, consider the commutative diagram, in which all maps are cellular (by construc-

tion).

(Ŝ, ϕ̂1) (Ŝ, ϕ̂2)

H H

(S, ϕ1) (S, ϕ2)

O1 O2.

id

p̂

D2

p̂

D1

F̃

p2
id

q2

F

p1

q1

By Lemma 2.4, if we can show that Gϕ̂1 = Gϕ̂2 , then we will have Gϕ̃1 = Gϕ̃2 , as 
required. For this, assume we have any nonsingular geodesic δ in (Ŝ, ϕ̂1). Then D1(δ1)
is a biinfinite geodesic. For any cell σ of Δ̃1, Lemma 3.5 tells us that the straightened 
image geodesic F̃∗(D1(δ)) intersects F̃ (σ) if and only if D1(δ) intersects σ. Since F̃ is 
cellular, this means that F̃∗(D1(δ)) meets the cell F̃ (σ) if and only if F̃ (D1(δ)) does. 
Therefore, there is a homotopy from F̃ (D1(δ)) to F̃∗(D1(δ)) with bounded tracks that 
respects the cell structure, and thus lifts to a homotopy from δ to the ϕ̂2–geodesic δ′, 
also preserving the cell structures (and having bounded tracks). Note that δ meets a cell 
σ of Λ if and only if δ′ does, and hence δ′ is also nonsingular. Therefore, Gϕ̂1 ⊂ Gϕ̂2 . By 
a symmetric argument, they are equal. Lemma 2.4 completes the proof. �
4. Geodesics and triangulations

Recall that G(ϕ̃i) denotes the set of all basic ϕ̃i–geodesics and that the maps 
∂ϕ̃i

: G(ϕ̃i) → Gϕ̃i
, for i = 1, 2, which maps each geodesic to its endpoints are homeomor-

phisms. Hence, under the assumption that Gϕ̃1 = Gϕ̃2 , this gives rise to a homeomorphism
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g : G(ϕ̃1) → G(ϕ̃2)

which maps each basic ϕ̃1–geodesic η to the basic ϕ̃2–geodesic having the same endpoints 
as η. In other words, g(η) is the ϕ̃2-straightening of the ϕ̃1–geodesic η. Note that orienting 
η naturally induces an orientation on g(η).

In this section, we will show that the straightening map preserves many properties 
of basic geodesics. Along the way we will begin adjusting the metric ϕ2 to equivalent 
metrics (under the assumption Gϕ̃1 = Gϕ̃2). A useful tool in the analysis that we also 
develop are triangulations of S adapted to the two metrics.

4.1. Concurrency points and partitions

Recall by Lemma 2.1 that only countably many basic ϕ̃i–geodesics pass through more 
than one cone point and that we denote the set of the corresponding pairs of endpoints 
by G2

ϕ̃1
. Also, given ζ ∈ S̃, we will write

G(ϕ̃i, ζ) = {γ ∈ G(ϕ̃i) | ζ ∈ γ} ⊂ G(ϕ̃i), and Gϕ̃i
(ζ) = ∂ϕ̃i

(G(ϕ̃i, ζ)) ⊂ Gϕ̃i

for each i = 1, 2. That is, G(ϕ̃i, ζ) is the set of basic ϕ̃i–geodesics that contain ζ and 
Gϕ̃i

(ζ) the set of all pairs of endpoints at infinity of such geodesics. For ζ ∈ Ŝ, will use 
the corresponding notation G(ϕ̂i, ζ) and Gϕ̂i

(ζ) for the analogously defined subsets of 
G(ϕ̂i) and Gϕ̂i

, respectively, for i = 1, 2.
Using the notion of chains, the following is proved in [3] for Euclidean cone metrics, 

but the proof is essentially identical in the case of hyperbolic cone metrics.

Proposition 4.1. Suppose ϕ1, ϕ2 ∈ H̃ypc(S) with Gϕ̃1 = Gϕ̃2 . There is a countable, 
π1S–invariant set Ω ⊂ Gϕ̃1 = Gϕ̃2 containing G2

ϕ̃1
∪ G2

ϕ̃2
with the following property. 

For any ζ1 ∈ cone(ϕ̃1) there exists ζ2 ∈ cone(ϕ̃2) so that

Gϕ̃1(ζ1) − Ω = Gϕ̃2(ζ2) − Ω.

Moreover, sending ζ1 to ζ2 determines a π1S–equivariant bijection cone(ϕ̃1) → cone(ϕ̃2).

Idea of the proof. A chain associated to any cone point ζi ∈ cone(ϕ̃i), for i = 1, 2, is 
a bi-infinite sequence x = {xk}k∈Z ⊂ S1

∞ so that for any k ∈ Z, xk−1, xk, xk+1 is a 
counter-clockwise ordered triple in S1

∞, and so that

{xk, xk+1} ∈ Gϕ̃1(ζ) \ (G2
ϕ̃1

∪ G2
ϕ̃2

).

From the fact that the cone angles are greater than 2π at ζi, it is straightforward to see 
that for any x ∈ S1

∞ with xk+1, x, xk−1 counterclockwise ordered, {x, xk} is not in Gϕ̃i
. 

Any biinfinite sequence {xk} ⊂ S1
∞ with the property that {xk, xk+1} ⊂ Gϕ̃i

\(G2
ϕ̃ ∪G2

ϕ̃ )

1 2
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and the property for triples xk+1, x, xk−1 just described is in fact a chain associated to 
a unique cone point of ϕ̃i. See [3, Proposition 4.1].

Because chains depend only on Gϕ̃1 = Gϕ̃2 and G2
ϕ̃1

∪ G2
ϕ̃2

, we get functions from 
the set of chains to both cone(ϕ̃1) and cone(ϕ̃2). In fact, there is an equivalence rela-
tion on chains, describable in terms of Gϕ̃1 = Gϕ̃2 and G2

ϕ̃1
∪ G2

ϕ̃2
, so that two chains 

are equivalent if and only if they are sent to the same cone point of cone(ϕ̃i), for each 
i = 1, 2 (see [3, Lemma 4.4]). Therefore, the set of equivalence classes of chains is in a 
bijective correspondence with cone(ϕ̃1) and cone(ϕ̃2). This in turn determines a bijec-
tion cone(ϕ̃1) → cone(ϕ̃2). The chain condition is π1S–invariant, and the map to cone 
points is equivariant, from which we deduce that the bijection cone(ϕ̃1) → cone(ϕ̃2) to 
π1S–equivariant. For any ζi, i = 1, 2, the set of pairs of endpoints of geodesics in Gϕ̃i

(ζi)
which are not consecutive terms in some chain is countable, and thus taking Ω to be the 
union of all such pairs produces the countable set Ω containing G2

ϕ̃1
∪G2

ϕ̃2
. See [3, Section 

4] for more details. �
Going forward we let C0 = cone(ϕ1) and C̃0 = p−1(C0) = cone(ϕ̃1). For the remainder 

of this subsection, we assume Gϕ̃1 = Gϕ̃2 , and let Ω be the set from Proposition 4.1. The 
π1S–equivariant bijection from that proposition can be extended to a π1S–equivariant 
homeomorphism, which is thus the lift of a homeomorphism S → S, isotopic to the 
identity. We replace ϕ2 with its pull back by this homeomorphism, which does not change 
the equivalence class, but allows us to say that cone(ϕ̃1) = C̃0 = cone(ϕ̃2). More precisely, 
we can promote the conclusion of the proposition to say that for all ζ ∈ C̃0, we have

Gϕ̃1(ζ) − Ω = Gϕ̃2(ζ) − Ω.

The conclusion of Proposition 4.1 may hold for other points ζ, and adjusting ϕ2 to 
take this into account will be useful later. Say that ζ1 ∈ S̃ is a (ϕ̃1, ϕ̃2, Ω)–concurrence 
point (or briefly concurrence point) if there exists ζ2 ∈ S̃ so that

Gϕ̃1(ζ1) − Ω = Gϕ̃2(ζ2) − Ω

where Ω is as in Proposition 4.1. In particular, the proposition says that every point in 
C̃0 is a concurrence point. We note that since Ω and Gϕ̃1 = Gϕ̃2 are π1S–invariant, if ζ
is a concurrence point, then so is γ · ζ, for any γ ∈ π1S. We say C̃ ⊂ S̃ is a concurrency 
set (for (ϕ̃1, ϕ̃2, Ω)), if C̃:

1. consists of (ϕ̃1, ϕ̃2, Ω)–concurrence points,
2. contains C̃0,
3. is π1S–invariant, and
4. contains only finitely many π1S–orbits of points.

If C̃ is a concurrency set, then we let C = p(C̃), and also call C ⊂ S a concurrency set 
(by π1S–invariance, note that C̃ = p−1(C)).
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As we did with the cone points, note that for any concurrency set C̃ we can adjust 
ϕ2 by a homeomorphism isotopic to the identity such that for all ζ ∈ C̃ we have

Gϕ̃1(ζ) − Ω = Gϕ̃2(ζ) − Ω.

We will say that ϕ2 has been C–normalized with respect to ϕ1. When the reference to 
ϕ1 is obvious, we will simply say that ϕ2 has C–normalized. We summarize the above 
discussion for later reference:

Lemma 4.2. Assume Gϕ̃1 = Gϕ̃2 and let C̃ be any concurrency set for (ϕ̃1, ϕ̃2, Ω). Then 
ϕ̃2 ∼ ϕ̃′

2 for a C–normalized ϕ̃′
2 ∈ H̃ypc(S); that is, ϕ̃′

2 satisfies

Gϕ̃1(ζ) − Ω = Gϕ̃′
2
(ζ) − Ω

for all ζ ∈ C̃. �
The upshot of this lemma is that, in order to prove the Current Support Theorem, we 

can assume that we have adjusted ϕ2 such that it is C–normalized, for some concurrency 
set C. In fact, for most of the proof of the Current Support Theorem, we can assume 
our concurrency set is just the set of cone points, C0 = cone(ϕ1) = cone(ϕ2). However, 
later we will find additional concurrency points, and rather than returning to all of the 
setup and preliminaries, we will proceed with an arbitrary concurrency set.

Now, let C̃ ⊂ S̃ be a concurrency set for (ϕ̃1, ϕ̃2, Ω), assume ϕ2 is C–normalized, and 
let η be a ϕ̃i–geodesic. As before, we say that η is singular if it contains a cone point 
and nonsingular otherwise. We say that η is C–singular if it contains a point of C̃, and 
non-C–singular otherwise. Let

G(ϕ̃i,Ω) = ∂−1
ϕi

(Gϕ̃i
− Ω) ⊂ G(ϕ̃i)

for i = 1, 2. The homeomorphism g : G(ϕ̃1) → G(ϕ̃2) restricts to a homeomorphism

g : G(ϕ̃1,Ω) → G(ϕ̃2,Ω)

Note that by Proposition 4.1, η ∈ G(ϕ̃1, Ω) is nonsingular if and only if g(η) is non-
singular. Moreover, η passes through ζ ∈ C̃ if and only if g(η) does (assuming, as we 
have, that ϕ2 is C–normalized) by Lemma 4.2. It is worth pointing out that, a priori, 
G(ϕ̃1, Ω) might not contain all nonsingular ϕ̃1–geodesics because of information loss in 
Ω: there is the potential for (at most countably many) nonsingular ϕ̃1–geodesics to be 
missing from G(ϕ̃1, Ω) (though this ultimately turns out not to be the case). Below 
we will need to approximate basic geodesics by sequences of nonsingular geodesics in 
G(ϕ̃1, Ω) and we note that we can always do this: any basic geodesic is, by definition, 
a limit of nonsingular geodesics and note that the proof of Lemma 2.2 actually shows 
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that there are uncountably many sequences of nonsingular geodesics approximating each 
basic geodesic.

Let η ∈ G(ϕ̃i) be a basic ϕ̃i–geodesic and ζ ∈ C̃. Recall that η divides S̃ into two half-
planes, the positive (left) half plane H+(η) and the negative (right) half plane H−(η). If 
ζ ∈ C̃ is disjoint from η, we say that ζ lies to the left of η if it belongs to H+(η) and that 
it lies to the right if it belongs to H−(η). If ζ ∈ η, then we say that ζ is on η. If ζ ∈ C̃0
and is on η, then η must make angle π on exactly one side at ζ: if η makes angle π on 
the left of ζ (respectively, on the right of ζ), and we say that ζ is on and to the right of 
η (respectively, on and to the left of η). If ζ ∈ C̃ � C̃0 and its on η, then η makes angle 
π on both sides at ζ, and we say that ζ is on and splits η. Therefore, η ∈ G(ϕ̃i) defines a 
partition of C̃ into five sets depending on whether a point is to the left of η, to the right 
of η, on and to the left of η, on and to the right of η, or on and splits η (where any of the 
last three could determine empty sets). Note that while the labels left, right, +, − are 
determined by arbitrarily choosing an orientation on η, the partition itself is defined by 
the unoriented geodesic. We will see that g preserves this partition (cf. [9, Lemma 12]). 
We start with the following special case.

Lemma 4.3. Suppose Gϕ̃1 = Gϕ̃2 , Ω is as in Proposition 4.1, C̃ ⊂ S̃ is a concurrency set, 
and ϕ2 is C–normalized. Each nonsingular η ∈ G(ϕ̃1, Ω) defines the same partition of C̃
as g(η) does.

Proof. Let η ∈ G(ϕ̃1, Ω) be nonsingular and fix an orientation on η and recall that this 
induces an orientation on g(η). Let ζ ∈ C̃. Note that ζ is on η if and only if it is on g(η)
by the definition of concurrency points and the assumption that ϕ2 is C–normalized. 
Moreover, it cannot be a cone point since η is nonsingular, and hence ζ splits both η and 
ζ.

So suppose, without loss of generality, that ζ is to the left of η, i.e. ζ ∈ H+(η). We 
claim that there exists a geodesic δ ∈ G(ϕ̃1, Ω) passing through ζ and contained in 
H+(η).

To see that such δ exists, let μ be a minimal length geodesic path from ζ to η meeting 
η at a point x (thus μ meets η orthogonally if x is not a cone point, and with angle at 
least π/2 on both sides if it is a cone point, cf. Fig. 6). Construct δ by concatenating 
two basic geodesic rays emanating from ζ and orthogonal to μ such that it makes angle 
π at ζ on the same side as x is on (see the image at left in Fig. 6). Then δ and η do 
not intersect, since if they did, this would create a geodesic triangle with angle sum 
greater than π which is not possible. Furthermore, δ cannot be asymptotic to η since 
this would create a partially ideal triangle with angle sum π. Therefore, δ and η have 
distinct unlinked end points in S1

∞. If necessary we perturb the angle at which δ meets 
μ while maintaining unlinked distinct endpoints from η so that δ is in G(ϕ̃1, Ω).

Now, note that g(δ) also passes through ζ and that δ and g(δ) have the same endpoints 
as η and g(η). If ζ is to the right of g(η) there would be a bigon bounded by subsegments 
of g(η) and g(δ) as seen in Fig. 6, a contradiction. Hence ζ lies to the left of g(η). �
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Fig. 6. Left: The point ζ ∈ C̃ and basic geodesic δ lie in H+(η). Right: The bigon created if g(η) did not 
preserve the partition.

The next lemma proves a stronger property for concurrence points and extends 
Lemma 4.3.

Lemma 4.4. Suppose Gϕ̃1 = Gϕ̃2 , Ω is as in Proposition 4.1, C̃ ⊂ S̃ is a concurrency 
set, and ϕ2 is C–normalized. For any ζ ∈ C̃ we have Gϕ̃1(ζ) = Gϕ̃2(ζ). Moreover, any 
η ∈ G(ϕ̃1) defines the same partition of C̃ (into five sets) as g(η) does.

Proof. Let ζ ∈ C̃ and let η ∈ G(ϕ̃1, ζ) be an oriented basic ϕ̃1–geodesic passing through 
ζ. Choose {ηn} ⊂ G(ϕ̃1, Ω) to be a sequence of nonsingular oriented ϕ̃1–geodesics limiting 
to η. If ζ is a cone point which is, say, on and to the left of η, we have that ζ lies to the 
left of ηn for all large n. If ζ is not a cone point we can choose a sequence of nonsingular 
geodesics ηn that converge to η such that ζ lies to the left of ηn for all n (see proof of 
Lemma 2.2 for a construction of such a sequence).

Now, {g(ηn)} is a sequence of nonsingular geodesics which limits to g(η) and ζ lies to 
the left of each g(ηn) by Lemma 4.3, and hence ζ lies to the left of g(η) or is on g(η). 
Note that η and g(η) have the same endpoints. Suppose ζ is not on g(η). Then there 
exists (an oriented) δ ∈ G(ϕ̃2, Ω) such that ζ is to the left of δ (it is in H+(δ)) and 
g(η) is to the right of δ (it is contained in H−(δ)). Such a geodesic can be constructed 
by a similar method as was used in the proof of Lemma 4.3: take the minimal length 
geodesic path μ from ζ to g(η) meeting g(η) at a point x (orthogonally if x is not a 
cone point). For any point y in the interior of μ that is not a cone point, let δy be any 
basic ϕ̃2–geodesic intersecting μ orthogonally at y, and if necessary, perturb y slightly 
to avoid the countably many geodesics not in G(ϕ̃2, Ω); the resulting geodesic δ = δy
cannot intersect g(η) since if it did it would create a geodesic triangle with angle sum 
at least π. Again by Lemma 4.3, g−1(δ) ∈ G(ϕ̃1, Ω) also has ζ on the left (and has the 
same endpoints as δ). However, since η passes through ζ we have then that η and g−1(δ)
contain segments bounding a geodesic bigon, a contradiction. Hence we must have that 
ζ is on g(η) as desired. Therefore, Gϕ̃1(ζ) ⊂ Gϕ̃2(ζ). The other containment is proved by 
a symmetric argument, and thus Gϕ̃1(ζ) = Gϕ̃2(ζ).

The second claim is proved similarly, appealing partially to the first part of the lemma. 
Let η ∈ G(ϕ̃1) be an oriented geodesic and ζ ∈ C̃. If ζ lies on η then by the first argument, 
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ζ also lies on g(ζ). If ζ ∈ C̃ � C̃0, then ζ splits η if and only if g(η) splits η. So suppose 
ζ is either to the left of η or on and to the left of η. As above, we can approximate η
with nonsingular geodesics {ηn} ⊂ G(ϕ̃1, Ω) such that ζ lies to the left of each ηn. Then 
ζ lies to the left of each g(ηn) by Lemma 4.3, and since g(ηn) converges to g(η), it must 
be that either ζ is to the left of g(η) or on and to the left of g(η). Since ζ is on η if and 
only if its on g(η) (by the first part of the lemma), it follows that ζ is on and to the left 
of η if and only if it is on and to the left of g(η). Consequently, ζ is to the left of η if and 
only if ζ is to the left of g(η). The case of ζ to the right of η or on and to the right of η
is handled in exactly the same way. This completes the proof. �
Remark. According to Lemma 4.4 a (ϕ̃1, ϕ̃2, Ω)–concurrency point ζ has the prop-
erty that (after normalizing ϕ2) all basic ϕ̃1–geodesics which contain it straighten 
to ϕ̃2–geodesics that contain it. Thus we are justified in simply referring to ζ as a 
(ϕ̃1, ϕ̃2)–concurrency point (and likewise referring to concurrency sets for (ϕ̃1, ϕ̃2)) with-
out reference to Ω. Indeed, going forward Ω will play no further role and so we discard 
it from the discussion.

4.2. Saddle connections, rays, and triangles

For the discussion in the remainder of this subsection, assume ϕ1, ϕ2 ∈ H̃ypc(S)
with Gϕ̃1 = Gϕ̃2 , we fix a concurrency set C for (ϕ1, ϕ2), and assume ϕ2 has been 
C–normalized.

Given a C–singular geodesic η, choosing an orientation of η induces an order on 
the points of C̃ it encounters. We say that the (oriented) geodesics η ∈ G(ϕ̃1) and 
g(η) ∈ G(ϕ̃2) have the same combinatorics (with respect to C̃) if they pass through 
exactly the same set of points of C̃ and in the same order. The goal of this subsection 
is to show that η and g(η) have the same combinatorics for all η ∈ G(ϕ̃1). Observe that 
by Lemma 4.4, η and g(η) encounter the same set of points of C̃, so we will need only 
show that the order in which they encounter the concurrence points is preserved by g. 
First we introduce some more terminology.

We say a ϕ̃i–geodesic ray is a (C, ϕ̃i)–ray (or just a C-ray if the metric is understood) 
if its initial point is in C̃ but its interior is disjoint from C̃. We say that ζ ∈ C̃ and 
x ∈ S1

∞ determine a (C, ϕ̃i)–ray if the ϕ̃i–geodesic ray from ζ to x is a (C, ϕ̃i)–ray.
Let ζ, ξ ∈ C̃ and δ be a ϕ̃i–geodesic segment connecting ζ and ξ. If δ contains no 

point of C̃ in its interior, we say that δ is a (C, ϕ̃i)–saddle connection, or just a C–saddle 
connection when the metric is clear. We say that ζ, η determine a (C, ϕ̃i)–saddle con-
nection when the ϕ̃i–geodesic segment between them is a (C, ϕ̃i)–saddle connection. A 
(C, ϕi)–saddle connection in S is the image of a (C, ϕ̃i)–saddle connection in S̃.

Lemma 4.5. If Gϕ̃1 = Gϕ̃2 , C̃ is a concurrency set, ϕ2 is C–normalized, and ζ, ξ ∈ C̃, 
x ∈ S1

∞, then:
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1. ζ, ξ determine a (C, ϕ̃1)–saddle connection if and only if they determine a (C,
ϕ̃2)–saddle connection.

2. ζ, x determine a (C, ϕ̃1)–ray if and only if they determine a (C, ϕ̃2)–ray.

Proof. Let δ1 be a (C, ϕ̃1)–saddle connection between ζ and ξ and δ2 the unique 
ϕ2–geodesic segment between ζ and ξ. We need to show that δ2 contains no points 
of C̃ in its interior. Suppose to the contrary that there were some ω ∈ C̃, distinct from 
ζ, ξ on δ2. Since ω is not on δ1, we can find an oriented, non-C–singular ϕ̃1–geodesic 
η ∈ G(ϕ̃1) so that ζ, ξ are to the left of δ1 and ω is to the right. By Lemma 4.4, g(η) is 
non-C–singular and ζ, ξ are to the left and ω is to the right. But then subsegments of 
δ2 and g(η) bound a bigon, which is a contradiction. Therefore, δ2 is a (C, ϕ̃2)–saddle 
connection. A symmetric argument proves the other implication.

The proof of the second claim is similar. Suppose ri is the ϕ̃i–ray from ζ to x and 
assume r1 is a C–ray while r2 contains some point ω ∈ C̃ different than ζ. There is an 
oriented non-C–singular ϕ̃1–geodesic η ∈ G(ϕ̃1) so that r1 is to the left of η and does not 
share an endpoint with it while ω is to the right. By Lemma 4.4 g(η) is non-C–singular, 
ζ is to the left, and ω is to the right, but r2 must therefore travel from the left of g(η)
starting at ζ, to the right passing through ω, and back to the left again to limit to x. 
Therefore r2 and g(η) contain segments that bound a bigon, which is a contradiction. 
So r2 is a C–ray. Again a symmetric argument proves the other implication. �

If r is a (C, ϕ̃1)–ray from ζ ∈ C̃ to x ∈ S1
∞, then Lemma 4.5 implies there is a 

(C, ϕ̃2)–ray from ζ to x, which we suggestively denote g(r). Similarly, the lemma implies 
that for each (C, ϕ̃1)–saddle connection δ between a pair ζ, ξ ∈ C̃ there is a (C, ϕ̃2)–saddle 
connection we denote g(δ) between ζ, ξ as well.

Corollary 4.6. Suppose Gϕ̃1 = Gϕ̃2 , C̃ is a concurrency set, and ϕ2 is C–normalized. Then 
for every η ∈ G(ϕ̃1), we have that η and g(η) have the same combinatorics. Equivalently, 
η is non-C–singular if and only if g(η) is, and if η is a (finite, infinite, bi-infinite) 
concatenation

η = . . . δi · δi+1 · δi+2 . . .

of (C, ϕ̃1)–saddle connections and/or (C, ϕ̃1)–rays, then

g(η) = . . . g(δi) · g(δi+1) · g(δi+2) . . . .

Proof. Given an oriented η ∈ G(ϕ̃1), if η is non-C–singular, then by Lemma 4.4, so is 
g(η). If η is a nontrivial concatenation η = . . . δi · δi+1 . . ., then all the points of C̃ that 
appear as endpoints of the saddle connections/rays of this concatenation also appear in 
g(η) by Lemma 4.4. In particular, each g(δi) is a (C, ϕ̃2)–saddle connection or (C, ϕ̃2)–ray 
contained in g(η). If the points of C̃ did not appear in the same order along g(η) as they 
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Fig. 7. The points ζ, ξ are on and to the right of η1, while χ is to the left of η1. The intersection of the 
positive half-planes is the triangle: H+(η1) ∩ H+(η2) ∩ H+(η3) = T .

did in η, then g(δi) would overlap with some g(δj) for some i �= j, contradicting the fact 
that these are (C, ϕ̃2)–saddle connections and/or (C, ϕ̃2)–rays, by Lemma 4.5. �

We say that T is a (C, ϕ̃i)-triangle if it is a ϕ̃i–geodesic triangle such that the vertices 
lie in C̃, its edges are C–saddle connections, and there are no points of C̃ in its interior. 
Note that, since C̃0 ⊂ C̃, any (C, ϕ̃i)–triangle is isometric to a hyperbolic triangle in H. 
If the covering map p restricted to a (C, ϕ̃i)–triangle is injective on the interior, then we 
call the image in S a (C, ϕi)–triangle (in fact, in this case, the negative curvature of ϕi

implies that the restriction of p can only fail to be injective on the vertices). We say that 
three points of C̃ determine a (C, ϕ̃i)–triangle if each pair determines a (C, ϕ̃i)–saddle 
connection, and the region bounded by these C–saddle connections is such a triangle.

Lemma 4.7. Suppose Gϕ̃1 = Gϕ̃2 , C̃ is a concurrency set, and ϕ2 is C–normalized. If 
ζ, ξ, χ ∈ C̃ determine a (C, ϕ̃1)–triangle then they also determine a (C, ϕ̃2)–triangle, and 
the two triangles have the same orientation.

Proof. Let T be the (C, ϕ̃1)–triangle determined by ζ, ξ, χ ∈ C̃, and orient it positively 
(its interior is to the left of its boundary) and suppose this induces the cyclic orientation 
ζ < ξ < χ < ζ on its vertices. Let α1, α2, and α3 be the (C, ϕ̃1)–saddle connection from 
ζ and ξ, from ξ to χ, and from χ to ζ, respectively. By Lemma 4.5, these determine 
(C, ϕ̃2)–saddle connections α′

1 = g(α1), α′
2 = g(α2), and α′

3 = g(α3), and these bound 
a triangular region T ′. We need to show that T ′ has no points of C̃ in its interior, and 
that it has the same orientation as T .

Extend α1, α2, α3 to oriented basic ϕ̃1–geodesics η1, η2, η3 such that each of the three 
points ζ, ξ, χ lie to the left or on and to the right of each of the geodesics; see Fig. 7. 
This choice ensures that for each i �= j, ηi and ηj cross and intersect in a single point 
(namely one of ζ, ξ, χ). By Corollary 4.6 g(ηi) is a basic geodesic which has g(αi) as a 
subsegment for each i = 1, 2, 3.

Note that the intersection of the three left half-planes H+(η1), H+(η2), and H+(η3)
is T and hence contains no other points of C̃ besides the vertices ζ, ξ, χ. By Lemma 4.4
(preservation of partitions), the same is true for the intersection of H+(g(η1)), H+(g(η2)), 
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and H+(g(η3)). However, by the above, this intersection is exactly T ′. Hence T ′ is indeed 
a (C, ϕ̃2)–triangle. By Corollary 4.6, ζ precedes ξ along g(η1) and since χ is to the left 
of g(η1), T ′ has the same orientation as T . �

We end this subsection with one more fact we will need for future reference.

Lemma 4.8. Suppose Gϕ̃1 = Gϕ̃2 , C̃ is a concurrency set and assume ϕ2 is C–normalized. 
Let η be a basic ϕ̃1–geodesic or a (C, ϕ̃1)–saddle connection. If η transversely crosses the 
interior of a (C, ϕ̃)–saddle connection δ, then g(η) transversely crosses the interior of 
g(δ).

Proof. Extend η and δ to basic ϕ̃1–geodesics η′ and δ′ (where η′ = η in the case η is a 
basic geodesic to start). Since η′ and δ′ cross, their endpoints link, and since g(η′) and 
g(δ′) have the same endpoints as η′ and δ′, respectively, g(η′) and g(δ′) also cross.

Suppose ζ, ξ ∈ C̃ are the endpoints of δ. Note that ζ and ξ are disjoint from and lie 
on opposite sides of η′. Hence, since g preserves partitions and concurrency, ζ and ξ are 
disjoint from and lie on opposite sides of g(η′). It follows that g(η′) transversely crosses 
g(δ′) at a point on the interior of the segment connecting ζ and ξ, which is exactly g(η)
by Corollary 4.6.

Now, if η = η′ is a geodesic we are done. If η is a saddle connection, say with endpoints 
ζ ′, ξ′ we get by the same argument as above that a basic extension of δ partition ζ ′ and 
ξ′ on different sides and, as above, we have that the intersection must happen at a point 
belonging to the saddle connection η. �
4.3. Triangulations

In this section we continue with the assumption that Gϕ̃1 = Gϕ̃2 for some ϕ1, ϕ2 ∈
H̃ypc(S), and that ϕ2 has been C–normalized for a concurrency set C. We will explain 
how to adjust ϕ2 to an equivalent metric ϕ′

2 and find a common triangulation with 
vertices in C and edges which are (C, ϕi)–saddle connections for i = 1 and 2 (see below 
for precise definitions). We note that the isotopy to the identity arising in the adjustment 
of ϕ2 may nontrivially braid C. Once this adjustment is made, however, we will show 
that for any other triangulation, the analogous adjustment of ϕ′

2 can be done without
additional braiding of C.

Now suppose T is a (C, ϕ1)–triangulation (or just ϕ1–triangulation, if C is under-
stood). This is a Δ–complex structure T for S (in the sense of [14]) so that the 0–skeleton 
is precisely C, and so that each edge is a (C, ϕ1)–saddle connection. In particular, each 
2–cell is a (C, ϕ1)–triangle as defined above.

We define a map fT : S → S to be the descent to S of a π1S–equivariant map 
f̃T : S̃ → S̃ which is the identity on C̃ and which sends each ϕ̃1–triangle T1 to the 
straightened ϕ̃2–triangle T2. By Lemma 4.7, T2 is also isometric to a geodesic triangle 
in the hyperbolic plane, and f̃T is defined to be the canonical triangle map from T1
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to T2 (conjugated by the isometries to the hyperbolic triangles). Equivariance of f̃T is 
immediate.

Proposition 4.9. The map fT is a homeomorphism, isotopic to the identity on S.

Proof. Since f̃T is the identity on C̃ and is equivariant, (fT )∗ is the identity, and so fT
has degree 1 and is homotopic to the identity. Since it maps each oriented triangle to 
a similarly oriented triangle, it is in fact a homeomorphism. Furthermore, since isotopy 
and homotopy are the same equivalence relation for homeomorphisms for closed surfaces, 
fT is isotopic to the identity, as required. �

Given a (C, ϕ1)–triangulation T , we may adjust the metric ϕ2 by pulling back via fT
to produce an equivalent metric. Having done so, and replacing ϕ2 with the equivalent 
metric we say that ϕ2 has been (C, T )–normalized and we note that T is simultaneously 
a (C, ϕ1)–triangulation and a (C, ϕ2)–triangulation, and the map fT is the identity. 
In this case we say that T is a (C, ϕ1, ϕ2)–triangulation. In other words, we have the 
following result:

Lemma 4.10. Suppose Gϕ̃1 = Gϕ̃1 . If C̃ is any concurrency set and T a (C, ϕ1)–triangula-
tion, then ϕ2 ∼ ϕ′

2 for some (C, T )–normalized ϕ′
2. That is, up to equivalence, we can 

always assume that T is a (C, ϕ1, ϕ2)–triangulation. �
Having adjusted ϕ2 so that T is a (C, ϕ1, ϕ2)–triangulation, the next lemma says that 

this adjustment “anchors” the cone points in relation to the geodesics.

Lemma 4.11. Suppose T is a (C, ϕ1, ϕ2)–triangulation. For any η ∈ G(ϕ̃1), g(η) is iso-
topic to η by an isotopy ht : S̃ → S̃ for t ∈ [0, 1] that preserves the triangles of T . The 
same is true for any (C, ϕ̃1)–saddle connection η.

Proof. Let η be any basic ϕ̃1–geodesic or (C, ϕ̃i)–saddle connection. For any triangle T1
of T̃ , we have that η ∩ T1 is either empty, a vertex of T1, a side of T1, or an arc cutting 
through the interior of T1, by convexity. In the last case, the arc may run between a vertex 
and the interior of a side or from the interior of one side to the interior of another. If 
η ∩T1 is not an arc, then by Lemmas 4.4 and 4.5 g(η) ∩T1 = η ∩T1. On the other hand, 
if η ∩ T1 is an arc cutting through the interior of T1, then by Lemma 4.8, g(η) ∩ T1 is 
also an arc connecting the same vertex to opposite sides, or the same pair of sides.

Now we produce the required isotopy ht in two steps. The first step takes place during 
times t ∈ [0, 12 ] and the second step takes place during times t ∈ [ 12 , 1]. We define ht for 
t ∈ [0, 12 ] so that it is the identity outside a small neighborhood of the 1–skeleton T̃ (1), 
has ht(T̃ (1)) = T̃ (1), and so that h 1

2
(η ∩ T̃ (1)) = g(η) ∩ T̃ (1). Now for any triangle T1

of T̃ , h 1
2
(η) ∩ T1 = g(η) ∩ T1, or else h 1

2
(η) ∩ T1 and g(η) ∩ T1 are arcs with the same 

endpoints. It is easy to complete the isotopy so that for t ∈ [ 12 , 1], ht is the identity on 
T̃ (1) and so that h1(η) ∩ T1 = g(η) ∩ T1 for every triangle T1. �
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If an isotopy is the identity on a set C throughout the isotopy, then we say that it is an 
isotopy relative to C, and that homeomorphism differing by such an isotopy is isotopic 
relative to C.

Corollary 4.12. Suppose T is a (C, ϕ1)–triangulation and that ϕ2 has been (C, T )–normal-
ized. If T ′ is another (C, ϕ1)–triangulation, then the associated homeomorphism 
fT ′ : S → S is isotopic to the identity relative to C.

Proof. Each (C, ϕ1)–saddle connection making up the edges of T ′ is homotopic in the 
complement of C to its (C, ϕ2)–straightening (since their lifts are isotopic in S̃ fixing C̃). 
Homotopy of arcs in the complement of the cone points implies isotopy of said arcs (fixing 
C throughout the isotopy). Since the saddle connections making up the edges of the 
triangulation have pairwise disjoint interiors, there is an isotopy of the identity, relative 
to C, that sends each (C, ϕ1)–saddle connection of T ′ to a (C, ϕ2)–saddle connection. 
After a further isotopy preserving the 1–skeleton of T ′, we obtain a map which is the 
canonical triangle map on each triangle of T ′, and is thus fT ′ . �

We say that ϕ2 is C–uber-normalized (with respect to ϕ1) if for any (C, ϕ1)–triangula-
tion T of S, the isotopy to the identity involved in adjusting ϕ2 so T is a (C, ϕ2)–triangu-
lation fixes C. By the corollary, if ϕ2 is (C, T )–normalized, then it is C–uber-normalized. 
We record the following fact about the examples from §3 which will be useful later.

Lemma 4.13. Suppose ϕ1, ϕ2 ∈ H̃ypc(S) are obtained from branched covers q : (S, ϕ1) →
O1 and F ◦ q : (S, ϕ2) → O2, for some homeomorphism F : O1 → O2 as in Theorem 3.1, 
so that Gϕ̃1 = Gϕ̃2 . Then the preimage of the even order orbifold points, C = q−1(E1), is 
a concurrency set and ϕ2 is C–uber-normalized with respect to ϕ1.

Proof. As in the proof of Theorem 3.1, we adjust F by a homeomorphism isotopic to 
the identity so that O1 → O2 is the homeomorphism of Lemma 3.4. Since an isotopy 
on an orbifold preserves the orbifold points, the lift of the isotopy is an isotopy of the 
identity S → S relative to C. It follows that the adjustment to F changes ϕ2 within its 
equivalence class by a homeomorphism isotopic to the identity relative to C. Therefore, it 
suffices to prove the theorem under this assumption. From the proof of Theorem 3.1, we 
have a cell structure on S with vertices in C for which the 2–cells are convex hyperbolic 
polygons with respect to both ϕ1 and ϕ2. As in the proof of Theorem 3.1, pulling back 
these cell structures to S̃ with vertex set C̃ = p−1(C) we found that for every nonsingular 
ϕ̃1–geodesic η, the ϕ̃2–straightening g(η) is nonsingular and it intersects the exact same 
set of cells as η (this is proved in Ŝ, but this property pushes down to S̃). Consequently, 
η and g(η) define the same partition of the set C̃. Now we may make a nearly identical 
argument to the one in the proof of Lemma 4.4 to see that Gϕ̃1(ζ) = Gϕ̃2(ζ) for all ζ ∈ C̃, 
proving that C̃ is a concurrency set (by assumption, C̃ contains all cone points) and that 
ϕ2 is C–normalized with respect to ϕ1.
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Now subdivide each 2–cell into (C, ϕ1)–triangles. We can adjust ϕ2 by a homeomor-
phism isotopic to the identity relative to C so that the triangles are also (C, ϕ2)–triangles, 
and the identity is the canonical map. Since the isotopy is relative to C, the new met-
ric is C–uber-normalized if and only if the original one is. However, the new metric is 
C–uber-normalized by Corollary 4.12. This completes the proof. �
5. Holonomy

A key ingredient in the proof of the Current Support Theorem is Proposition 5.4
below, which states that if Gϕ̃1 = Gϕ̃2 (and ϕ2 is suitable normalized), then there is 
an orientation preserving homeomorphism h : ∂H → ∂H topologically conjugating the 
associated holonomy homomorphisms ρ1 to ρ2 (see §2.5). The majority of this section 
is devoted to proving this proposition, and ends by showing that if the conjugating 
homeomorphism h is in PSL2(R), then ϕ1 ∼ ϕ2.

For the remainder of this section we shall assume Gϕ̃1 = Gϕ̃2 for ϕ1, ϕ2 ∈ H̃ypc(S), 
that C is a concurrency set for (ϕ1, ϕ2), and that ϕ2 has been C–uber-normalized. In 
particular we have C0 = cone(ϕ1) = cone(ϕ2) ⊆ C.

Recall from §2.2 that Ŝ is the completion of the universal cover of Ṡ = S \ C0
with respect to (either of) the pulled back metrics ϕ̂i of ϕi, for i = 1, 2, and that 
the universal covering map extends to the completion which we denote by p̂ : Ŝ → S. 
Because ϕ2 is C–uber-normalized, for any (C, ϕ1)–triangulation T we may adjust ϕ2 by 
a homeomorphism isotopic to the identity by an isotopy which fixes C, so that T is a 
(C, ϕ1, ϕ2)–triangulation. Since C0 ⊆ C, the C–uber-normalization implies that the iso-
topy lifts to Ŝ, and thus Gϕ̂2 does not change under such an adjustment. The developing 
map for ϕ̂i extends to the completion Di : Ŝ → H, and is equivariant with respect to the 
holonomy homomorphism ρi : π1Ṡ → PSL2(R), for i = 1, 2, where Ṡ = S \ C0; see §2.4.

5.1. Combinatorics of basic geodesics in Ŝ

Analogous to the definition for ϕ̃i–geodesics in S̃, we say that a ϕ̂i–geodesic is 
non-C–singular if it is disjoint from Ĉ = p̂−1(C) (and simply nonsingular if it is disjoint 
from the completion points Ĉ0 = p̂−1(C0)). A (C, ϕ̂i)–saddle connection is a ϕ̂i–geodesic 
segment between two points of Ĉ such that its interior is disjoint from Ĉ. Also, recall 
that G(ϕ̂i) denotes the set of all basic ϕ̂i–geodesics, i.e. the closure of the set of nonsin-
gular ϕ̂i–geodesics. Moreover, as we did in S̃, we say that two basic geodesics η1 ∈ G(ϕ̂1)
and η2 ∈ G(ϕ̂2) have the same combinatorics if they have the same endpoints in Ŝ1

∞ and 
pass through exactly the same set of points of Ĉ, in the same order.

Lemma 5.1. Let ϕ1, ϕ2 ∈ H̃ypc(S) with Gϕ̃1 = Gϕ̃2 , C any concurrency set, and suppose 
ϕ̃2 is C–uber-normalized. Then Gϕ̂1 = Gϕ̂2 and hence we have a well-defined straight-
ening map ĝ : G(ϕ̂1) → G(ϕ̂2). Moreover, for all η ∈ G(ϕ̂1), η and ĝ(η) have the same 
combinatorics.
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As a consequence of Lemma 5.1, the ϕ̂2–straightening map ĝ may be extended to 
a map from all basic ϕ̂1–geodesic segments and rays (as well as lines), with endpoints 
(possibly at infinity) in the set Ĉ ∪ Ŝ1

∞, to basic ϕ̂2–geodesic segments and rays having 
the same combinatorics. This is obtained by extending any basic ϕ̂1–geodesic segment 
or ray to a (biinfinite) basic ϕ̂1–geodesic (see Lemma 2.2), applying ĝ, then appealing to 
the lemma to find an appropriate subsegment or ray of the resulting basic ϕ̂2–geodesic.

Proof. Fix a (C, ϕ1, ϕ2)–triangulation T , adjusting ϕ2 to an equivalent metric if neces-
sary. Let T̃ be the lifted triangulation to S̃ and further lift T̃ to a triangulation T̂ in Ŝ. 
As noted above, because ϕ2 was C–uber-normalized, the isotopy to the identity of the 
homeomorphism used to adjust ϕ2 fixes C (and hence C0) and so lifts to Ŝ. In particular, 
proving the conclusion of the lemma for the adjusted metric implies it for the original 
metric.

As in Lemma 2.2, every non-C–singular ϕ̂i–geodesic projects to a non-C–singular 
geodesic in S̃ by p̃ since this map is a local isometry (away from the cone points). Let 
η be a non-C–singular ϕ̂1–geodesic. The ϕ̃2–straightening g(p̃(η)) is isotopic to p̃(η) in 
the complement of C̃, by an isotopy that preserves each triangle of T̃ by Lemma 4.11. 
We can lift this isotopy, triangle-by-triangle, to an isotopy from η to a non-C–singular 
ϕ̂2–geodesic η′ passing through the same triangles of T̂ , which therefore has the same 
endpoints in Ŝ1

∞. Any basic ϕ̂1–geodesic η is a limit of nonsingular ϕ̂1–geodesics, and 
by analyzing the limits in each triangle (and appealing to Corollary 4.6), it follows that 
there is a basic ϕ̂2–geodesic η′ running through precisely the same set of triangles as 
η (and through the same set of vertices, in the same order). It follows that Gϕ̂1 ⊂ Gϕ̂2

and the straightening map ĝ preserves combinatorics. A symmetric argument proves the 
other inclusion, hence Gϕ̂1 = Gϕ̂2 , and we are done. �

The following is an immediate consequence of Lemma 5.1. Recall that G(ϕ̂i, ζ) is the 
set of all basic ϕ̂i–geodesics through a point ζ ∈ Ĉ.

Corollary 5.2. Suppose Gϕ̃1 = Gϕ̃2 , C is a concurrency set, and ϕ2 is C–uber-normalized. 
Then we have ĝ(G(ϕ̂1, ζ)) = G(ϕ̂2, ζ) for all ζ ∈ Ĉ. �

For this reason, we will refer to the points of Ĉ as (ϕ̂1, ϕ̂2)–concurrence points and Ĉ
a concurrency set for (ϕ̂1, ϕ̂2). Another useful fact is the following, which relates angles 
between intersecting basic geodesic rays.

Lemma 5.3. Given oriented basic ϕ̂1–geodesic rays η, η′ emanating from a cone point 
ζ ∈ Ĉ0 making angle θ1 > 0, let θ2 > 0 be the angle between ĝ(η) and ĝ(η′). Then 
θ1
π ∈ Z if and only if θ2π ∈ Z, and in this case the angles are equal. In general, we have ⌊
θ1
π

⌋
=

⌊
θ2
π

⌋
.

As a consequence, if two oriented ϕ̂1–geodesics η, η′ intersect at a cone point, and 
D1(η) = D1(η′), then D2(ĝ(η)) = D2(ĝ(η′)).
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Proof. First note that the angles θ1 and θ2 depend only on the initial segments of η
and η′ (the case of θ2 requires an application of Lemma 5.1). In particular, θ1 remains 
unchanged by modifying the side on which η and η′ make angle π at various cone points 
they meet, since their initial segments are preserved by this modification.

First suppose the angle between η and η′ is π. Without loss of generality, we may 
assume that the angle from η to η′ is π (i.e. counterclockwise) and that η makes angle 
π on the left and η′ makes angle π on the right at every cone point they encounter. 
Then reversing the orientation on η and concatenating with η′ we get η · η′ is a basic 
ϕ̂1–geodesic making angle π on the right at every cone point encountered. Straightening, 
we see that ĝ(η · η′) = ĝ(η) · ĝ(η′) is also a basic geodesic, implying that ĝ(η) and ĝ(η′)
also make angle π (in fact, it’s counter clockwise from ĝ(η) to ĝ(η′) using the cyclic 
ordering on Ŝ1

∞).
Now given any two rays η and η′, without loss of generality assume the angle from η

to η′ is positive (counterclockwise) so that the angle from ĝ(η) to ĝ(η′) is also positive. 
Let η = η0, η1, . . . , ηk, ηk+1 be a finite sequence of geodesic rays emanating from ζ so 
that the angle from ηi to ηi+1 is π (counterclockwise) and the angle from ηk to η′ is 
θ0
1 ∈ [0, π). If ηk = η′ then θ0

1 = 0, but otherwise, let ηk+1 be such that the angle from η′

to ηk+1 is π − θ1
0 > 0. Then θ1 = kπ + θ0

1 and θ0
1 ∈ [0, π). By the first part of the proof, 

the angle from ĝ(ηi) to ĝ(ηi+1) is π. If θ0
1 = 0, then ĝ(ηk) = ĝ(η′) and thus θ2 = kπ = θ1. 

In this case θ1π = θ2
π and these are integers. On the other hand, if θ0

1 ∈ (0, π), then θ2

must be between kπ (the measure of the angle from ĝ(η0) to ĝ(ηk)) and (k + 1)π (the 
measure of the angle from ĝ(η0) to ĝ(ηk+1)). Therefore 

⌊
θ1
π

⌋
= kπ =

⌊
θ2
π

⌋
.

Finally note that if η, η′ ∈ G(ϕ̂1, ζ) and D1(η) = D1(η′), then η, η′ must make angle 
at ζ which is an integral multiple of π. By the first part of the lemma the same is true 
for ĝ(η), ̂g(η′), and thus D2(ĝ(η)) = D2(ĝ(η′)). �
5.2. Conjugating circle actions

The fundamental group, π1Ṡ, acts on Ŝ by isometries with respect to ϕ̂1 and ϕ̂2. More 
generally we consider any group G acting by homeomorphisms on Ŝ that are isometries 
with respect to both ϕ̂1 and ϕ̂2. In this situation, there are holonomy homomorphisms 
ρi : G → PSL2(R), for i = 1, 2.

The goal of this subsection is to use the developing maps and behavior of basic 
geodesics to prove the following, which is a key ingredient in the proof of the Current 
Support Theorem.

Proposition 5.4. Suppose Gϕ̃1 = Gϕ̃2 , C is a concurrency set and ϕ2 is C–uber-
normalized. Suppose a group G acts on Ŝ by homeomorphisms that are isometries 
with respect to ϕ̂1 and ϕ̂2. Then there is an orientation preserving homeomorphism 
h : ∂H → ∂H topologically conjugating ρ1 to ρ2. That is, for all x ∈ ∂H and γ ∈ G, we 
have
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h(ρ1(γ) · x) = ρ2(γ) · h(x). (2)

Moreover, for all η ∈ G(ϕ̂1), h(∂D1(η)) = ∂D2(ĝ(η)).

We will define the map h : ∂H → ∂H as follows. Suppose x ∈ ∂H, and take any 
oriented geodesic α in H with forward end point x. Let η be any basic ϕ̂1–geodesic with 
D1(η) = α (see Lemma 2.5) and define h(x) to be the forward endpoint of D2(ĝ(η))
in ∂H. An immediate concern is whether h is well-defined, and §5.2.1 is dedicated to 
showing that it is.

5.2.1. Developed asymptotic geodesics
Given oriented basic ϕ̂i–geodesics η1, η2, we say that they are developed forward 

asymptotic if Di(η1) and Di(η2) are forward asymptotic in H (note we allow the possi-
bility that Di(η1) = Di(η2)).

In this section, our goal is to show that if η and η′ are basic ϕ̂1–geodesics that are 
developed forward asymptotic, then ĝ(η) and ĝ(η′) are developed forward asymptotic 
as well, which is an important ingredient in verifying that h is well-defined. The proof 
of this preservation of developed forward asymptoticity by ĝ is somewhat complicated. 
In fact, it turns out to be easier to prove that ĝ preserves the property that developed 
geodesics intersect in the forward direction, and then observe that being developed for-
ward asymptotic occurs as the limiting case of developed geodesics intersecting. The 
intersecting behavior we prove is described by the next proposition.

Proposition 5.5. Suppose η and η′ are oriented basic ϕ̂1–geodesics and let σ be a 
ϕ̂1–saddle connection with one end point on η and the other on η′. Suppose further 
that

(i) the angle between σ and the forward rays of each of η and η′ measures strictly between 
0 and π, and

(ii) D1(η) and D1(η′) intersect forward of the end points of D1(σ).

Then ĝ(η), ĝ(η′), and ĝ(σ) satisfy (i) and (ii) with respect to D2 as well.

Proof. Observe that (i) holds for ĝ(η), ĝ(η′), and ĝ(σ) by Lemma 5.3, so we need only 
prove (ii). Let ζ and ξ be the cone points at which σ intersects η and η′ respectively, 
and we orient σ in the direction from ζ to ξ so that η and η′ cross σ from left to right; 
see Fig. 8. Without loss of generality we can replace η and η′ by geodesics that agree 
on their initial segments forward of ζ and ξ, respectively, so that they make angles π on 
the left and right, respectively, at every cone point they encounter (by Lemma 5.3 if the 
conclusion holds for these replacements, it must hold for the original geodesics).

Creating a foliated triangle in H. The assumptions of the proposition imply that D1(σ), 
D1(η) and D1(η′) form a triangle T . Let a be the point of intersection D1(η) ∩D1(η′). 
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ξ

ζ

σ

η′

η

(Ŝ, ϕ̂1)

D1(ξ)

D1(ζ)

D1(σ)

D1(η′)

D1(η)

Developed in H

Fig. 8. A pair of developed forward intersecting geodesics connected by a saddle connection and their devel-
oped image.

D1(ξ)

D1(ζ)

D1(σ)

D1(η′)

D1(η)

a

Fig. 9. Foliated triangle T in H.

Foliate T ⊆ H by geodesic segments from D1(σ) to a, see Fig. 9. Orient each segment 
from D1(σ) to a. The set of leaves can be parametrized by their intersection with D1(σ).

The goal for what follows is to “pull this foliation back” to a foliation of a region 
containing σ whose leaves are basic ϕ̂1–geodesic segments. We will then argue that a 
sufficiently robust subset of these basic geodesics are configured in a similar way after 
ϕ̂2–straightening so that we may conclude that ĝ(η) and ĝ(η′) are developed forward 
intersecting.

Pulling back the foliation. Now we describe a foliated region in Ŝ that maps to the 
foliated triangle T by D1. Consider a point z ∈ σ. If there is a unique basic ϕ̂1–geodesic 
arc starting at z whose D1–image is a leaf of the foliation of T through D1(z), then denote 
this arc fz. If not, then all such arcs must agree on some initial subarc, δ, from z to a cone 
point. In this case we let f l

z and fr
z be the arcs of the unique basic ϕ̂1–geodesics through z, 

containing δ, making angle π on the left and right, respectively, at every cone point they 
encounter and that each map to the leaf through D1(z). Now let T̂ be the union of the arcs 
fz (or f l

z and fr
z ) over all z ∈ σ, which is a region in Ŝ (singularly) foliated by these arcs.

Finitely many cone points. Next we want to show that T̂ contains only finitely many 
cone points, and hence only finitely many leaves of the foliation of T̂ encounter cone 
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σ

z′

z
x

y

p̃

p̃(z′)

p̃(z)

p̃(σ)

p̃(x)

p̃(y)

Δ

Fig. 10. Failure of injectivity produces a triangle Δ in S̃.

points. To see this, we first note that T̂ has finite diameter: if d is the maximal length of 
a leaf of T , then every point of T̂ is within d of the compact segment σ. Next, we claim 
that T̂ projects injectively to S̃ by p̃. Assuming this claim, observe that since there are 
only finitely many cone points in the bounded image of T̂ in S̃, there are only finitely 
many cone points in T̂ . We are left to prove the claim.

To prove T̂ projects injectively to S̃, we argue by contradiction. If it does not project 
injectively, there must be two distinct points x and y in T̂ that project to a single point in 
S̃. The ϕ̂1–geodesic leaves through x and y must be distinct since basic geodesics project 
injectively from Ŝ to S̃. In the case where the two leaves are f l

z and fr
z for some z, x and 

y projecting to the same point of S̃ would contradict the fact that the total cone angle at 
each cone point of S̃ exceeds 2π. In the case where the two leaves through x and y intersect 
σ at distinct points z and z′, we call the leaves fz and fz′ , suppressing the r, l superscripts 
that may decorate these since they do not make a difference in the argument that follows.

The subsegment of σ from z to z′, together with the segments of fz and fz′ from z
to x and z′ to y, respectively, together project to a geodesic triangle Δ in S̃; see Fig. 10. 
Note that this triangle must either have a cone point in its interior, or a cone point 
on the boundary which makes an angle greater than π toward the inside: otherwise, 
the entire triangle would lift to Ŝ, and hence x and y would be the same point of T̂ , a 
contradiction. We will say that such cone points are fully inside Δ.

Because Δ is compact, there are only finitely many cone points fully inside Δ. Observe 
that there must be some w in σ between z and z′ (possibly equal to one of z or z′) so 
that fr

w and f l
w pass through one of these cone points fully inside Δ. One or both of 

these must project to a geodesic segment in S̃ that cuts off a “sub-triangle”, coming from 
two more distinct points x′ and y′ in T̂ that project to the same point; see Fig. 11. This 
new triangle Δ′ contains fewer cone points. We may repeat this procedure, replacing x, y
with x′, y′ and eventually arrive at a triangle containing no cone points fully inside it, 
which is a contradiction. Therefore, T̂ must inject into S̃, and consequently T̂ contains 
only finitely many cone points.

T̂ is a union of hyperbolic triangles. We note that T̂ has piecewise ϕ̂1–geodesic boundary 
(consisting of subarcs of the arcs f l

z and fr
z , together with arcs of η, η′, and σ), does not 

contain cone points in the interior, and the angle between consecutive boundary segments 
is less than or equal to 2π; see Fig. 12. Therefore, D1 maps T̂ to T , and is injective except 
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Fig. 11. Two possibilities for a subtriangle Δ′ of Δ in S̃ (shaded) with fewer cone points fully inside.

ξ

ζ

σ

η′ f l
3

fr
3

f l
2fr

2

f l
1

fr
1

η

(Ŝ, ϕ̂1)

Fig. 12. The “polygon” T̂ created in (Ŝ, ϕ̂1).

along consecutive boundary arcs that make angle 2π: these are arcs of f l
z and fr

z which 
are “zipped together” by D1. The leaves of T̂ are sent to leaves of T by construction.

The orientation of σ in the direction from ζ to ξ orders the leaves of the foliation of 
T̂ , except pairs f l

z and fr
z that meet cone points, which we order so that fr

z < f l
z. Now 

write fr
1 , f

l
1, f

r
2 , f

l
2, . . . , f

r
n, f

l
n for the (possibly empty) set of all leaves in T̂ , in order, 

that encounter cone points away from σ, and for convenience, write f l
0 and fr

n+1 for the 
leaves contained in η and η′, respectively. For each 0 ≤ i ≤ n, let T̂i ⊂ T̂ be the region 
bounded by f l

i , fr
i+1, and σ. Note that this region contains no cone points in its interior, 

and maps isometrically by D1 to a sub-triangle of T in H which is a union of leaves. We 
view T̂ as a “polygon” decomposed into a union of hyperbolic triangles in this way. See 
Fig. 12. The special case that n = 0 is possible (then T̂ is itself a hyperbolic triangle) 
and our argument is valid in that case as well, though one could also argue it directly.

Intersections and orientations preserved. Going forward, we abuse notation and let

σ, f l
0, f

r
1 , f

l
1, . . . , f

r
n, f

l
n, f

r
n+1

denote oriented basic ϕ̂1–geodesic containing the arc of the same name. For fr
0 and 

f l
n+1, this basic ϕ̂1–geodesic is η and η′, respectively. For 1 ≤ i ≤ n, we assume the basic 
ϕ̂1–geodesics f l

i and fr
i are as described above, thus making angles π on the left and 
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ξ

ζ

ĝ(σ)

ĝ(η′)
ĝ(f l

3)

ĝ(fr
3 )

ĝ(f l
2) ĝ(fr

2 )

ĝ(f l
1)

ĝ(fr
1 )

ĝ(η)

(Ŝ, ϕ̂2)

Fig. 13. The ϕ̂2–straightenings of the important ϕ̂1–geodesics.

right, respectively, at every cone point they meet. Finally, we choose the extension for 
σ so that it crosses η and η′ at ζ and ξ, respectively.

The pairs (f l
i , f

r
i ) have the same D1–image in H because they share a common sub-

arc from their point of intersection with σ to their first cone point after that in the 
forward direction. Therefore the basic ϕ̂2–geodesics ĝ(f l

i ) and ĝ(fr
i ) must also have the 

same D2–images since they also share a common arc (since f l
i and ĝ(f l

i ) have the same 
combinatorics, as do fr

i and ĝ(fr
i ), by Lemma 5.1).

We also observe that fr
i and f l

i cross σ from left to right and f l
i crosses fr

i+1 from right 
to left, for all indices i for which the corresponding geodesics are defined. By construction, 
these geodesics clearly intersect in a single point (possibly a cone point) and cross because 
the intersection is transverse or because of the choices of the sides on which geodesics 
make angle π if at a cone point. Since the crossing of geodesics and orientations of such 
(e.g. left to right or right to left) is encoded by the endpoints at infinity, it follows that 
ĝ(fr

i ) and ĝ(f l
i ) cross ĝ(σ) from left to right and ĝ(f l

i ) crosses ĝ(fr
i+1) from right to left, 

for all i as above. Moreover, because δ and ĝ(δ) have the same combinatorics for every 
δ ∈ G(ϕ̂1) (Lemma 5.1), these intersections occur at a single point (see Fig. 13).

When developed, ĝ(η) and ĝ(η′) intersect. As noted above, D2(ĝ(f l
i )) = D2(ĝ(fr

i ))
since they share an arc. We denote this image simply as D2(ĝ(fi)), noting that 
D2(ĝ(f0)) = D2(ĝ(η)) and D2(ĝ(fn+1)) = D2(ĝ(η′)). Since ĝ(f l

i ) crosses ĝ(fr
i+1) from 

right to left for each 0 ≤ i ≤ n it follows that

(1) D2(ĝ(fi)) crosses D2(ĝ(fi+1)) from right to the left, for all 0 ≤ i ≤ n.

Similarly, since ĝ(fr
i ) and ĝ(f l

i ) cross ĝ(σ) from left to right for all 1 ≤ i ≤ n, as do 
ĝ(η) = ĝ(f l

0) and ĝ(η′) = ĝ(fr
n+1), we also have

(2) D2(ĝ(fi)) crosses D2(ĝ(σ)) from left to right for all 0 ≤ i ≤ n + 1.
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D2(ĝ(σ))

D2(ĝ(η))

D2(ĝ(f1))

D2(ĝ(f2))

D2(ĝ(f3))

D2(ĝ(η′))

Fig. 14. Linking and ordering of end points of D2–images of the important ϕ̂2–straightened geodesics (shown 
here in the Klein model of H).

We now claim that condition (ii) in Proposition 5.5 holds for ĝ(η), ĝ(η′), and ĝ(σ). 
For this, note that the end points of D2(ĝ(σ)) divide ∂H into two intervals: the left in-
terval (left of D2(ĝ(σ))) and the right interval (right of D2(ĝ(σ))). Statement (2) implies 
that D2(ĝ(fi)) must have initial endpoint on the left interval and final endpoint on the 
right interval, for all 0 ≤ i ≤ n + 1. Statement (1) implies that for all 0 ≤ i ≤ n, the 
initial (final) endpoint of D2(ĝ(fi)) must occur clockwise of the initial (final) endpoint 
of D2(ĝ(fi+1)) within the left (right) intervals. Since clockwise ordering is a total order 
on each of the left and right intervals, transitivity implies that the initial (final) end-
point of D2(ĝ(η′)) = D2(ĝ(fn+1)) must occur clockwise of the initial (final) endpoint of 
D2(ĝ(η)) = D2(ĝ(f0)) within the left (right) intervals. See Fig. 14. This implies not only 
that D2(ĝ(η)) and D2(ĝ(η′)) intersect (because their endpoints are linked), but that the 
intersection point must be forward of the intersections of D2(ĝ(η)) and D2(ĝ(η′)) with 
D2(ĝ(σ)). The latter is because D2(ξ) is forwards of D2(ζ) along D2(ĝ(σ)). This proves 
condition (ii), and thus completes the proof. �

We now prove an asymptotic version of Proposition 5.5.

Proposition 5.6. Suppose η and η′ are oriented basic ϕ̂1–geodesics that are developed 
forward asymptotic. Suppose there is a saddle connection σ with one end point on η and 



46 V. Erlandsson et al. / Advances in Mathematics 409 (2022) 108662
one end point on η′, such that the angles between σ and the forward rays of η and η′ lie 
in the interval [0, π]. Then ĝ(η) and ĝ(η′) are developed forward asymptotic as well.

Proof. Let θ1, θ′1 ∈ [0, π] be the angles between σ and the forward rays of η and η′, 
respectively, and θ2, θ′2 be the corresponding angles between ĝ(σ) and the forward rays 
of ĝ(η) and ĝ(η′), respectively. If θ1 = 0 or π, then θ′1 = π or 0, respectively, and then the 
D1–image of σ, η, and η′ are all contained in a single geodesic. Appealing to Lemma 5.3
we see that the same is true of ĝ(σ), ĝ(η), and ĝ(σ), completing the proof in these cases.

Now assume that θ1, θ′1 ∈ (0, π), so by Lemma 5.3, θ2, θ′2 ∈ (0, π). Let ζ and ξ be the 
end points of σ where η and η′ cross it, respectively. Observe that for all θ ∈ (0, θ1), 
any geodesic ηθ through ζ whose forward ray makes angle θ with σ must have D1(ηθ)
intersecting D1(η′) forward of σ. By Proposition 5.5, D2(ĝ(ηθ)) must intersect D2(ĝ(η′))
forward of D2(ĝ(σ)).

We may assume that as θ → θ1, ηθ → η, after replacing η and each ηθ by geodesics 
through ζ with the same D1–images, if necessary. Therefore as θ → θ1, we have ĝ(ηθ) →
ĝ(η), and so also D2(ĝ(ηθ)) → D2(ĝ(η)). Since D2(ĝ(ηθ)) intersects D2(ĝ(η′)) forward 
of D2(ĝ(σ)) for all θ ∈ (0, θ0), we see that either D2(ĝ(η)) intersects D2(ĝ(η′)) forward 
of D2(ĝ(σ)) or else D2(ĝ(η)) and D2(ĝ(η′)) are forward asymptotic. We cannot be in 
the former situation since reversing the roles of ϕ̂1 and ϕ̂2 and applying Proposition 5.6
to ĝ(σ), ĝ(η), and ĝ(η′), would imply D1(η) and D1(η′) intersect forward of D1(σ), a 
contradiction. We are thus in the latter situation, and so ĝ(η) and ĝ(η′) are developed 
forward asymptotic. This completes the proof. �

Now, given a ϕ̂i–saddle connection σ and x ∈ ∂H, we consider the family Λ(σ, x) ⊂
G(ϕ̂i) which consists of the set of basic ϕ̂i–geodesics η intersecting σ that may be oriented 
so that Di(η) limits to x in the forward direction. We view Λ(σ, x) as a subset of G(ϕ̂i), 
together with a choice of orientation for each geodesic.

If Di(σ) can be extended to an oriented geodesic η with x as its forward end point, 
then Λ(σ, x) is the set of all oriented basic ϕ̂i–geodesics meeting σ with developed image 
equal to η. Note that in this case Λ(σ, x) is countable.

If not, then note that Λ(σ, x) contains the pullback (as in the proof of Proposition 5.5) 
of the family of geodesics in H that limit to x in the forward direction and intersect Di(σ)
transversely. In particular, in this case, Λ(σ, x) is uncountable.

Proposition 5.7. For any ϕ̂1–saddle connection σ and x ∈ ∂H, there exists a point 
h(σ, x) ∈ ∂H so that

ĝ(Λ(σ, x)) = Λ(ĝ(σ), h(σ, x)).

We clarify that ĝ(Λ(σ, x)) ⊂ G(ϕ̂2) and each geodesic in the ĝ–image is assigned the 
orientation coming from its orientation in Λ(σ, x).
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Proof. We begin by addressing the case where Λ(σ, x) is countable. In this situation, 
D1(Λ(σ, x)) is a single oriented geodesic in H. By Lemma 5.3, ĝ(Λ(σ, x)) consists of 
oriented ϕ̂2–geodesics that develop to a single geodesic η in H which contains D2(ĝ(σ)). 
Letting the forward end point of this geodesic be h(σ, x) gives us that ĝ(Λ(σ, x)) ⊂
Λ(ĝ(σ), h(σ, x)). Reversing the roles of ϕ̂1 and ϕ̂2 proves the other inclusion.

In the case where Λ(σ, x) is uncountable, D1(Λ(σ, x)) consists of all oriented geodesics 
in H that intersect D1(σ) and have x as their forward end point. As in Proposition 5.5, 
we systematically pull back each of these geodesics to one or two ϕ̂1–geodesics to get a 
family R ⊆ Λ(σ, x).

More precisely, we begin by pulling back short segments of forward asymptotic 
geodesics that intersect the interior of D1(σ) and extending them to basic geodesics 
in (Ŝ, ϕ̂1). Again, as in Proposition 5.5, if in the extension process, a cone point is en-
countered, we continue extending in two ways: by always making angle π on the right, 
and by always making angle π on the left. At most countably many of these pullback 
geodesics, {f l

i , f
r
i }i∈A, where A is a countable indexing set, are such extensions (because 

there are only countably many cone points in (Ŝ, ϕ̂1)). The superscript tells us which 
side of the oriented basic geodesic makes angle π. Again as in Proposition 5.5, this con-
struction always has D1(f l

i ) = D1(fr
i ). For the two geodesics in H intersecting the end 

points of Dσ, we also include in R the two geodesics η0 and η1 in Λ(σ, x) that intersect 
the end points of σ and whose forward rays make an angle less than π with σ.

We show that ĝ(R) consists of basic ϕ̂2–geodesics that are developed forward asymp-
totic, and use this to prove the desired result. The geodesics of ĝ(R) in (Ŝ, ϕ̂2) must 
also be a family of pairwise non-intersecting geodesics since the end points of any two 
are not linked, and because the cone points visited by each geodesic are preserved by 
the straightening map ĝ. Betweenness of geodesics is also preserved by ĝ. This implies 
that the geodesics of ĝ(R) intersect ĝ(σ) in the same order as in (Ŝ, ϕ̂1). In particular, 
ĝ(R) is a family of geodesics between ĝ(η0) and ĝ(η1). Finally, D2(ĝ(f l

i )) = D2(ĝ(fr
i )), 

by Lemma 5.3, and we denote this geodesic by D2(ĝ(fi)).
Consider the region S of (Ŝ, ϕ̂2) given by the union of geodesics in ĝ(R). Using an 

argument similar to the proof of Proposition 5.5 (finitely many cone points), we can 
show that S projects injectively to S̃ and therefore has the following property. Given 
any distance d, there are only finitely many cone points in S distance d away from 
σ. This implies that S is a hyperbolic surface with boundary. S does not contain any 
cone points in its interior, but it does have at most countably many cone points on 
its boundary. Through the ith cone point, there are two geodesics of ĝ(R): ĝ(f l

i ) and 
ĝ(fr

i ). Extending the overlap of ĝ(f l
i ) and ĝ(fr

i ) to an isometric identification of the 
two geodesics (“zipping up” the slits of S), we obtain a new surface Szip. Note that the 
metric on Szip is nonsingular, since after the identification, the total angle at each cone 
point is 2π. Therefore, the restriction of D2 to S descends to an isometry Szip → D2(S). 
Since ĝ(R) is a set of non-intersecting geodesics between these two, the image of ĝ(R)
in Szip is a set of parallel geodesics between the images of ĝ(η0) and ĝ(η1). Further since 
ĝ(η0) and ĝ(η1) are developed forward asymptotic, the image of ĝ(R) must be forward 
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asymptotic (a family of parallel geodesics between two forward asymptotic geodesics in 
the hyperbolic plane must all be forward asymptotic to each other).

Note that every ϕ̂1-geodesic η ∈ Λ(σ, x) is either contained in R or there exists η′ ∈ R
such that η and η′ intersect at a cone point and D1(η) = D1(η′). Using Lemma 5.3, 
we then have D2(ĝ(Λ(σ, x))) = D2(ĝ(R)). Therefore, ĝ(Λ(σ, x)) is a developed forward 
asymptotic family, and we let h(σ, x) be the forward end point of D2(ĝ(Λ(σ, x))). From 
here, since every geodesic of ĝ(Λ(σ, x)) must instersect ĝ(σ), the inclusion ĝ(Λ(σ, x)) ⊆
Λ(ĝ(σ), h(σ, x)) follows by definition, and the reverse inclusion follows by a symmetric 
argument with the roles of ϕ̂1 and ϕ̂2 exchanged. �

Finally, we are able to show the desired result that developed forward asymptoticity 
is preserved by the straightening map.

Proposition 5.8. Suppose η1 and η2 are developed forward asymptotic ϕ̂1–geodesics. Then 
ĝ(η1) and ĝ(η2) are developed forward asymptotic as well.

Proof. If η1 and η2 meet in a segment or cone point, then ĝ(η1) and ĝ(η2) are developed 
forward asymptotic by Lemma 5.3. For the rest of the proof, suppose that this is not 
the case. The geodesics η1 and η2 must not intersect transversely in (Ŝ, ϕ̂1) (otherwise 
they would intersect transversely when developed). Therefore, they partition Ŝ into three 
regions: one bounded by η1, one bounded by η2 and one bounded by both. Pick a cone 
point ζ in the region bounded by η1 alone and another cone point ξ in the region bounded 
by η2 alone. Take the geodesic segment between ζ and ξ. It must be a concatenation of 
saddle connections. After forgetting some initial and final saddle connections, we may 
assume the remaining concatenation σ1, σ2, . . . σk has only σ1 intersecting η1 and only 
σk intersecting η2.

Let z be the forward end point of D1(η1) and D1(η2) in ∂H. Then consider the devel-
oped forward asymptotic families Λ(σi, z). We know that η1 ∈ Λ(σ1, z) and η2 ∈ Λ(σk, z), 
and from Proposition 5.7 we know that ĝ(Λ(σi, z)) = Λ(ĝ(σi), h(σi, z)). To complete our 
proof, we will show that ∪iΛ(ĝ(σi), h(σi, z)) is a developed forward asymptotic family 
by showing that h(σ1, z) = h(σ2, z) = . . . = h(σn, z).

Let ci be the cone point σi ∩ σi+1, the intersection of two consecutive saddle connec-
tions. The intersection of any two consecutive families Λ(σi, z) ∩Λ(σi+1, z) consists of the 
basic ϕ̂1–geodesics through ci that develop to have z as their forward end point. This set 
is countably infinite, so in particular, it is not empty. For any η ∈ Λ(σi, z) ∩ Λ(σi+1, z), 
the ϕ̂2–straightening ĝ(η) is contained in Λ(ĝ(σi), h(σiz)) ∩ Λ(ĝ(σi+1), h(σi+1, z)). The 
geodesic ĝ(η) cannot have two distinct forward end points, and so h(σi, z) = h(σi+1, z). 
This argument holds for all i, and so ∪iΛ(ĝ(σi), h(σi, z)) is a developed forward asymp-
totic family. In particular, this implies that ĝ(η1) and ĝ(η2) are developed forward 
asymptotic. �

As proposed earlier, we may now define h : ∂H → ∂H by requiring h(x) to be the 
forward endpoint of D2(ĝ(η)) where η ∈ G(ϕ̂1) is a basic geodesic oriented so that x is the 
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forward endpoint of D1(η), and Proposition 5.8 implies that this is indeed well-defined. 
Moreover, by the proposition, for any ϕ̂1–saddle connection σ, we have h(x) = h(σ, x)
where h(σ, x) is as in Proposition 5.7.

At long last, we are able to prove Proposition 5.4.

Proof of Proposition 5.4. The definition of h implies that for any biinfinite basic 
ϕ̂1–geodesic η, h(∂D1(η)) = ∂D2(ĝ(η)). It remains to show that h is an orientation 
preserving homeomorphism, and that it topologically conjugates the holonomies.

Recall that the developing maps Di can be extended to D̄i : Ŝ ∪Ki → H, where Ki is 
the set of end points of basic ϕ̂i–geodesics (see discussion after Lemma 2.5). Note that 
K1 = K2 =: K since Gϕ̂1 = Gϕ̂2 . Using this extension, we may write h(D̄1(k)) = D̄2(k), 
for any k ∈ K ⊆ Ŝ1

∞.
If h were not injective, there would be two developed forward asymptotic families of 

oriented basic ϕ̂1–geodesics that are not developed forward asymptotic to each other, 
however their images by ĝ are developed forward asymptotic to each other. This con-
tradicts Proposition 5.8, and thus h is injective. The map h is surjective because D̄2
maps K onto ∂H by Corollary 2.6. So, for every y ∈ ∂H, there exists k ∈ K such that 
D̄2(k) = y. Then h(D̄1(k)) = D̄2(k), so we have h(D̄1(k)) = y, as desired.

In order to show h is a homeomorphism, we show that h and h−1 are both open 
maps. Let U be an open interval in ∂H. Choose a point ζ1 ∈ H such that ζ1 = D1(ζ), 
where ζ is a cone point in (Ŝ, ϕ̂1). Consider the set of oriented geodesics through ζ1
that have forward end point in U . These geodesics sweep out some interval of angles 
(α, β) measured at ζ1. From the description of neighborhoods of cone points in Ŝ in §2.2, 
we may choose a family of basic ϕ̂1-geodesics Λ through ζ that sweep out an interval 
of angles of the same measure as (α, β) which develop to the above mentioned set of 
geodesics in H. The ϕ̂2–straightening of this family, ĝ(Λ), is a family of basic geodesics 
in (Ŝ, ϕ̂2) that are concurrent at ζ and sweep out an open interval of angles at ζ, though 
the measure of this interval is not necessarily β−α. The image D2(ĝ(Λ)) must be a family 
of concurrent geodesics, passing through ζ2 = D2(ζ), that sweep out an open interval of 
angles at ζ2. Therefore the forward end points of the geodesics in D2(ĝ(Λ)) must form 
an open interval in ∂H. This implies that h is an open map. The same argument with 
the subscripts 1 and 2 interchanged shows that h−1 is an open map. Therefore h is a 
homeomorphism. Moreover, sweeping through angles counterclockwise with respect to 
ϕ̂1 is the same as sweeping through them counterclockwise with respect to ϕ̂2, and thus 
h is orientation preserving.

We now show that h topologically conjugates ρ1 to ρ2. That is, for γ ∈ G and x ∈ ∂H, 
we prove Equation (2). Recall that since γ acts on Ŝ by isometries with respect to both 
ϕ̂1 and ϕ̂2, it extends to Ŝ1

∞, and thus K. Since Di also extends to K, we have:

h(ρ1(γ) · x) = h(ρ1(γ) · D̄1(k)), for some k ∈ K.

= h(D̄1(γ · k)) by definition of the holonomy homomorphism.

= D̄2(γ · k) by definition of h.
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= ρ2(γ) · D̄2(k) by definition of the holonomy homomorphism.

= ρ2(γ) · h(D̄1(k)) by definition of h and extensions of Di.

= ρ2(γ) · h(x) by definition of k. �
5.3. Rigidity from h ∈ PSL2(R)

We end this section by noting that for the rigidity statement in the Current Support 
Theorem, we want the homeomorphism h from Proposition 5.4 to be in PSL2(R).

Proposition 5.9. If Gϕ̃1 = Gϕ̃2 and h : ∂H → ∂H from Proposition 5.4 lies in PSL2(R), 
then ϕ1∼ϕ2.

This proposition will follow easily from the next lemma.

Lemma 5.10. Suppose Gϕ̃1 = Gϕ̃2 and h : ∂H → ∂H from Proposition 5.4 lies in PSL2(R). 
If ϕ2 is C0–uber-normalized, with C0 = cone(ϕ1) = cone(ϕ2), then for any two basic 
ϕ̂1–geodesics η, η′ ∈ G(ϕ̂1) that intersect making angle θ < π, ĝ(η) and ĝ(η′) also intersect 
making angle θ.

Proof. From the hypotheses and Lemma 5.1, we have Gϕ̂1 = Gϕ̂2 , cone(ϕ̂1) = cone(ϕ̂2) =
Ĉ0, and since η and η′ intersect in a single point making angle less than π, the same is 
true of ĝ(η) and ĝ(η′) (by Lemma 5.3 if η intersects η′ in a point of Ĉ0). Moreover the 
angle between η and η′ (respectively, ĝ(η) and ĝ(η′)) are the same as their images by 
D1 (respectively, D2). By Proposition 5.4, h(∂D1(η)) = ∂D2(ĝ(η)) and h(∂D1(η′)) =
∂D2(ĝ(η′)). Since h ∈ PSL2(R), we extend it to a map h̄ : H → H which is an isometry 
in H and

h̄(D1(η)) = D2(ĝ(η)) and h̄(D1(η′)) = D2(ĝ(η′)).

Since h̄ is an isometry in H, the angle between D1(η) and D1(η′) is equal to the angle 
between their h̄–images, D2(ĝ(η)) and D2(ĝ(η′)). �
Proof of Proposition 5.9. After adjusting ϕ2 if necessary, we may assume it has been 
C0–uber-normalized with respect to ϕ1, so that cone(ϕ̃1) = cone(ϕ̃2) = C̃0, and 
thus Gϕ̂1 = Gϕ̂2 and cone(ϕ̂1) = cone(ϕ̂2) = Ĉ0 by Lemma 5.1. Let T be a 
(C0, ϕ1)–triangulation of S and further adjust ϕ2 by an isotopy if necessary so that 
it is a (C0, ϕ1, ϕ2)–triangulation. Let T̂ be the lift of T to Ŝ.

Since T̂ is simultaneously a (C0, ϕ̃1)–triangulation and a (C0, ϕ̃2)–triangulation, the 
image of each triangle T̂ in T̂ under both developing maps is a geodesic triangle in H. 
Further D1(T̂ ) is isometric to (T̂ , ϕ̂1) and D2(T̂ ) is isometric to (T̂ , ϕ̂2). This is because 
the developing maps are local isometries on sets that do not contain cone points in 
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their interiors, and since all interior angles of triangles measure less than π, this can be 
promoted to an isometry in the case of a triangle.

For each vertex of each triangle of T̂ , extending the two sides adjacent to that vertex to 
basic ϕ̂1–geodesics η and η′, Lemma 5.10 implies the angle between η and η′ agrees with 
the angle between ĝ(η) and ĝ(η′). Since ĝ(η) and ĝ(η′) are extensions of the sides of the 
triangle to basic ϕ̂2–geodesics, it follows that the interior angle of the triangle is the same 
when measured in both metrics. Since the identity on Ŝ is a canonical map on each trian-
gle with respect to ϕ̂1 on the domain and ϕ̂2 on the range, and since the interior angles of 
the triangles are equal, this map is an isometry. Therefore, the identity (Ŝ, ϕ̂1) → (Ŝ, ϕ̂2)
is an isometry, and hence so is the identity (S, ϕ1) → (S, ϕ2), proving ϕ1 ∼ ϕ2. �
6. Proof of the Current Support Theorem

The conclusion of the Current Support Theorem has two parts: a rigidity statement 
and a flexibility statement. Proposition 5.9 says that to prove the rigidity statement—
that is, if Gϕ̃1 = Gϕ̃2 then ϕ1 ∼ ϕ2—it suffices to show that the homeomorphism h from 
Proposition 5.4 lies in PSL2(R). Proposition 2.7 easily implies that if Γ1 = ρ1(π1Ṡ) is 
indiscrete, then h lies in PSL2(R). In this section we first describe a weaker condition 
that still suffices to guarantee that h lies in PSL2(R). We then show that the only way 
this condition can fail is if we are in the situation described in Theorem 3.1, proving the 
flexibility statement.

Throughout this section, we will assume ϕ1, ϕ2 ∈ H̃ypc(S) with Gϕ̃1 = Gϕ̃2 and that 
C0 = cone(ϕ1) = cone(ϕ2) with ϕ2 being C0–uber-normalized (so that Gϕ̂1 = Gϕ̂2 by 
Lemma 5.1). For each i = 1, 2, recall that Di : Ŝ → S is the developing map for ϕ̂i, ρi is 
the holonomy homomorphism defined on π1Ṡ (or any group acting by homeomorphisms, 
isometrically with respect to both ϕ̂1 and ϕ̂2), and Γi = ρi(π1Ṡ) with qi : (S, ϕi) → Oi =
H/Γi, the quotient space by Γi (which is an orbifold if Γi is discrete).

6.1. Rigidity

The right condition to ensure rigidity turns out to involve a certain enlargement of Γ1
which we describe below. First, we need the following fact. Given ξ ∈ H, let τξ denote 
the involution given by a rotation of order 2 about ξ.

Proposition 6.1. Suppose Gϕ̃1 = Gϕ̃2 , ϕ2 is C0–uber-normalized, and h : ∂H → ∂H is the 
homeomorphism from Proposition 5.4. Given ζ ∈ Ĉ0, set ζi = Di(ζ), for i = 1, 2. Then 
hτζ1h

−1 = τζ2 .

Proof. Fix any ζ ∈ Ĉ0. By Corollary 5.2, ĝ(G(ϕ̂1, ζ)) = G(ϕ̂2, ζ). Moreover, for any 
η ∈ G(ϕ̂1, ζ) we have h(∂D1(η)) = ∂D2(ĝ(η)) by Proposition 5.4. Next observe that τζ1
interchanges the endpoints of D1(η), while τζ2 interchanges the endpoints of D2(ĝ(η)). 
Therefore, ∂D1(η) has the form {x, τζ1(x)} for some x ∈ ∂H, and ∂D2(ĝ(η)) =
{h(x), τζ2(h(x))}. Combining these facts, we have τζ2(h(x)) = h(τζ1(x)). Every x ∈ ∂H

is in ∂D1(η) for some η ∈ G(ϕ̂1, ζ) by Lemma 2.5, and thus τζ2h = hτζ1 , as required. �
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For each ζ ∈ Ĉ0 ⊂ Ŝ and i = 1, 2, let ζi = Di(ζ), let τζi ∈ PSL2(R) be the involution 
as above, and set

Γ0
i = 〈Γi, {τζi}ζ∈Ĉ0

〉.

Corollary 6.2. Suppose Gϕ̃1 = Gϕ̃2 and ϕ2 is C0–uber-normalized. The homeomorphism 
h : ∂H → ∂H from Proposition 5.4 topologically conjugates Γ0

1 to Γ0
2 sending τζ1 to τζ2

for all ζ ∈ Ĉ0.

Proof. As a consequence of Proposition 5.4, h topologically conjugates Γ1 to Γ2, and by 
Proposition 6.1, hτζ1h−1 = τζ2 , for all ζ ∈ Ĉ0. Therefore h topologically conjugates Γ0

1
to Γ0

2. �
For each i = 1, 2, we write pi : H → O0

i = H/Γ0
i for the quotient space. If Γ0

i is 
discrete, then O0

i is a hyperbolic orbifold. Otherwise, we view it simply as the quotient 
topological space. Since ρi(π1Ṡ) = Γi < Γ0

i , and the map Di : Ŝ → H is ρi–equivariant, it 
follows that Di descends to a continuous map q0

i : (S, ϕi) → O0
i fitting into the following 

diagram

Ŝ
Di

p̂

H

pi

S
q0
i O0

i .

As with qi, the map q0
i is a locally isometric branched cover with respect to ϕi if Γ0

i is 
discrete, but is only a continuous map in general.

The next proposition provides a sufficient condition for rigidity.

Proposition 6.3. If Gϕ̃1 = Gϕ̃2 and Γ0
1 is indiscrete, then ϕ1 ∼ ϕ2.

Proof. Observe that O1 = H/Γ0
1 is compact, being the image of S by q0

1 . Adjusting 
ϕ2 by a homeomorphism isotopic to the identity if necessary, we may assume that ϕ2

is C0–uber-normalized. By Corollary 6.2, Γ0
1 and Γ0

2 are topologically conjugate by h, 
and since Γ0

1 is indiscrete, Proposition 2.7 implies h ∈ PSL2(R). Therefore, ϕ1 ∼ ϕ2 by 
Proposition 5.9. �

The next corollary describes one situation where Γ0
1 is discrete, and yet the home-

omorphism h topologically conjugating Γ0
1 to Γ0

2 is necessarily in PSL2(R), giving us 
another case where we have rigidity.

Corollary 6.4. If Gϕ̃1 = Gϕ̃2 and Γ0
1 is a Fuchsian triangle group, then ϕ1 ∼ ϕ2.
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Proof. Since h conjugates Γ0
1 to Γ0

2, it follows from Lemma 2.8 that h ∈ PSL2(R), and 
Proposition 5.9 again implies ϕ1 ∼ ϕ2. �
6.2. Flexibility

We now turn to the situation that Gϕ̃1 = Gϕ̃2 , but ϕ1 � ϕ2. We continue with the 
assumptions on ϕ1, ϕ2, C0, etc., and with the definitions of Γ0

i , O0
i , etc., as above. 

According to Corollary 6.2, h topologically conjugates Γ0
1 to Γ0

2, and we let

ψ0 : Γ0
1 → Γ0

2

denote the isomorphism; that is, in terms of the action on ∂H, ψ0(γ) = hγh−1, for all 
γ ∈ Γ0

1.
To prove the Current Support Theorem, we need to show that ϕ1 comes from a 

branched cover of an orbifold and that ϕ2 is (up to equivalence) obtained by deforming 
the orbifold as in Theorem 3.1. By Proposition 6.3, we need only consider the case that 
Γ0

1 (and hence also Γ0
2) is discrete. The goal is to show that for the branched covers of 

orbifolds q0
i : S → O0

i , for i = 1, 2, there is a homeomorphism F : O0
1 → O0

2 such that q0
2

and F ◦ q0
1 differ by a homeomorphism of S isotopic to the identity. Let E0

i be the set of 
even order orbifold points in O0

i . We begin with the following.

Lemma 6.5. Suppose Gϕ̃1 = Gϕ̃2 and Γ0
1 is discrete. The set C = (q0

1)−1(E0
1 ) is a concur-

rency set for (ϕ1, ϕ2).

Proof. Note that by the definition of Γ0
1, C is a finite set and cone(ϕ1) = C0 ⊂ C. Now 

fix any ζ ∈ C. If ζ ∈ C0 we know that it is a concurrency point and its lifts p̂−1(ζ) ⊂ Ŝ

are concurrency points by Corollary 5.2. So assume ζ ∈ (q0
1)−1(E0

1 ) \C0 and consider any 
ζ̂ ∈ p̂−1(ζ) ⊂ Ŝ. Recall that G(ϕ̂1, ζ̂) consists of all basic ϕ̂1–geodesics passing through 
ζ̂. Since ζ̂ is not a cone point, any two geodesics in G(ϕ̂1, ζ̂) intersect in exactly the one 
point ζ̂.

Claim. The set of basic ϕ̂2–geodesics {ĝ(η) | η ∈ G(ϕ̂1, ζ̂)} are concurrent.

Proof. First, for any two geodesics η1, η2 ∈ G(ϕ̂1, ζ̂), their ϕ̂2–straightenings ĝ(η1), ̂g(η2)
must intersect in exactly one point, and that point is not a cone point. To see this, note 
that the endpoints of ĝ(ηi) are the same as the endpoints of ηi, for i = 1, 2, and the 
endpoints of η1 and η2 link. The intersection is a single non-cone point because ηi and 
ĝ(ηi) have the same combinatorics, for i = 1, 2 by Lemma 5.1. Now, suppose η0, η1, η2 ∈
G(ϕ̂1, ζ̂) are any three distinct geodesics, let ĝ(η0) ∩ ĝ(η1) = ξ̂1 and ĝ(η0) ∩ ĝ(η2) = ξ̂2. 
We must show that ξ̂1 = ξ̂2. To do this, we first analyze the point ζ̂ in more detail.

Since p1(D1(ζ̂)) ∈ O0
1 is an even order orbifold point, there exists an involution τ ∈ Γ0

1, 
rotating about the fixed point D1(ζ̂) through angle π. Since ψ0 is induced by conjugation 
by h, ψ0(τ) is also a rotation through angle π about some point ξ ∈ H.
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For each i = 0, 1, 2, D1(ηi) is a geodesic through D1(ζ̂), and we let xi and yi = τ · xi

denote its endpoints in ∂H. By Proposition 5.4, the endpoints of D2(ĝ(ηi)) are h(xi) and 
h(yi). On the other hand, by Proposition 6.1, we have

h(yi) = h(τ · xi) = (hτh−1) · h(xi) = ψ0(τ) · h(xi).

Therefore, D2(ĝ(ηi)) is also invariant by ψ0(τ), and thus passes through ξ, for i = 0, 1, 2. 
Since ξ is the unique point of D2(ĝ(η0)) ∩D2(ĝ(ηi)), for i = 1, 2, we must have D2(ξ̂1) =
ξ = D2(ξ̂2). But ξ̂1, ξ̂2 ∈ ĝ(η0), and D2 is injective on ĝ(η0), and therefore ξ̂1 = ξ̂2, as 
required. �

Let ξ̂ be the concurrent point of {ĝ(η) | η ∈ G(ϕ̂1, ζ̂)}. We have thus shown that

Gϕ̂1(ζ̂) ⊂ Gϕ̂2(ξ̂).

We may reverse the roles of ϕ̂1 and ϕ̂2 since D2(ξ̂) is the fixed point of an even order 
elliptic element of Γ0

2, and is not a cone point. Doing so proves the reverse inclusion, and 
shows that ζ is a concurrency point for (ϕ1, ϕ2), as required. �

The next proposition is the final ingredient for the proof of the Current Support 
Theorem.

Proposition 6.6. Suppose Gϕ̃1 = Gϕ̃2 , Γ0
1 is discrete, C = (q0

1)−1(E0
1 ) is the concurrency 

set from Lemma 6.5, and that ϕ2 is C–uber-normalized. Then there is a homeomorphism 
f : S → S, isotopic to the identity relative to C, and a homeomorphism F : O0

1 → O0
2 so 

that q0
2 ◦ f = F ◦ q0

1.

Observe that the conclusion of this proposition implies that ϕ1 and ϕ2 arise as in 
Theorem 3.1, and thus proving this proposition will essentially complete the proof of the 
Current Support Theorem.

Proof. Let Δ̃i be the cell structures on H from Lemma 3.4 applied to Gi = Γ0
i and the 

isomorphism ψ0, let Δ̃′
i be the triangulation of H obtained by subdividing Δ̃i, for i = 1, 2, 

and F̃ : (H, Δ̃′
1) → (H, Δ̃′

2) the canonical map given by the second half of Lemma 3.4. 
We write F : O0

1 → O0
2 to denote the descent of F̃ , by the universal (orbifold) coverings 

pi : H → O0
i , for i = 1, 2. The map F is the canonical map with respect to the descended 

triangulations, Δ′
1 and Δ′

2 on O0
1 and O0

2, respectively.
We will adjust ϕ2 by a homeomorphism f : S → S isotopic to the identity relative to 

C (without changing its name, as usual). Thus to prove the proposition, it suffices to 
show that after this adjustment, the following diagram commutes.
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(Ŝ, ϕ̂1) (Ŝ, ϕ̂2)

H H

(S, ϕ1) (S, ϕ2)

O0
1 O0

2

idŜ

p̂

D2

p̂

D1

F̃

p2
idS

q0
2

F

p1

q0
1

The “back” square obviously commutes (p̂ = p̂), and since F is the descent of the 
equivariant map F̃ this implies that the “front” square commutes (p2 ◦ F̃ = F ◦ p1). 
Similarly, the two “sides” commute (pi ◦ Di = q0

1 ◦ p̂, for i = 1, 2) by equivariance and 
descent. Since the “bottom” square is what we want to prove, and is the descent of 
the “top” square, it suffices to prove the top commutes; that is, we must show that 
F̃ ◦D1 = D2.

Let Δ̂ be the cell structure on Ŝ obtained by pulling back Δ̃1 with respect to D1 : Ŝ →
H. The vertex set of Δ̂ is the concurrency set, that is, Δ̂(0) = Ĉ. Since the 1–skeleton of 
Δ̃1 is a union of biinfinite geodesics, the 1–skeleton of Δ̂ is a union of basic ϕ̂1–geodesics. 
Specifically, there is a maximal set of basic geodesics Υ1 ⊂ G(ϕ̂1) so that

Δ̂(1) =
⋃

η∈Υ1

η.

Since D1 is ρ1–equivariant, and ρ(π1Ṡ) = Γ1 < Γ0
1, it follows that Δ̂ is π1Ṡ–invariant, 

and hence by maximality, Υ1 is π1Ṡ–invariant.
The 2–cells of Δ̂ are convex hyperbolic polygons that map isometrically by D1 to 

their image 2–cells in H. Since the action of π1Ṡ on Ŝ is free except at the points of Ĉ0, 
it follows that the stabilizer of each 2–cell (a compact polygon) is trivial: otherwise it 
would have a fixed point in the interior. It follows that p̂ maps the interior of every 2–cell 
homeomorphically to S, and thus Δ̂ descends to a cell structure Δ on S, all of whose 
2–cells are hyperbolic polygons with respect to ϕ1 (possibly with some edges identified). 
The zero-skeleton is Δ(0) = p̂(Ĉ) = C.

Subdivide Δ to a triangulation T , then adjust ϕ2 by a homeomorphism isotopic to 
the identity so that T is a (C, ϕ1, ϕ2)–triangulation. Since ϕ2 is C–uber-normalized, the 
adjustment is by a homeomorphism isotopic to the identity relative to C. This pulls back 
to a π1Ṡ–invariant triangulation T̂ . Any geodesic η ∈ Υ1 is a concatenation of edges of 
Δ̂, and hence edges in T̂ , and thus it follows that ĝ(η) = η. Moreover, the identity 
restricts to the canonical map on each C–saddle connection of η, with respect to ϕ̂1 on 
the domain and ϕ̂2 on the range.

Now we see how F̃ is related to D1 and D2. For any vertex ζ ∈ Δ̂(0) = Ĉ, if ζ1 = D1(ζ)
and ζ2 = D2(ζ), then because

ψ0(τζ1) = hτζ1h
−1 = τζ2 ,
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we have F̃ (ζ1) = ζ2. That is

F̃ ◦D1(ζ) = D2(ζ).

Furthermore, for any η ∈ Υ1, since η is a basic geodesic for both ϕ̂1 and ϕ̂2, D1(η) and 
D2(η) are both geodesics in H. The geodesic η passes through infinitely many points of 
Ĉ. Let ζ, ζ ′ ∈ η ∩ Ĉ be two distinct such points, and observe that by the equation above 
we have

F̃ ◦D1(ζ) = D2(ζ) and F̃ ◦D1(ζ ′) = D2(ζ ′).

Since D1(η) and D2(η) are determined by two points on them, it follows that F̃ ◦D1(η) =
D2(η). Moreover, for every edge e of Δ̂(1) contained in η, the identity in Ŝ is the canonical 
geodesic segment map when restricted to e, and since F̃ is also the canonical map from 
D1(e) to D2(e), naturality of canonical maps implies F̃ ◦ D1 and D2 agree on e. So, 
F̃ ◦D1 and D2 agree on Δ̂(1).

For any 2–cell σ of Δ̂, the restrictions of D1 and D2 to σ are isometries with respect 
to ϕ̂1 and ϕ̂2, respectively, and the composition

D2|−1
σ ◦ F̃ ◦D1|σ

is the identity on ∂σ. We may therefore adjust ϕ2 by a homeomorphism S → S isotopic 
to the identity by an isotopy which is the identity outside p̂(σ), so that D2|−1

σ ◦ F̃ ◦D1|σ
is the identity. Equivalently, F̃ ◦ D1|σ = D2|σ. Performing this adjustment on each of 
the finitely many 2–cell of Δ we have F̃ ◦ D1 = D2, as required. This completes the 
proof. �
Proof of the Current Support Theorem. Suppose ϕ1, ϕ2 ∈ H̃ypc(S) and Gϕ̃1 = Gϕ̃2 . If 
Γ0

1 is indiscrete, then Proposition 6.3 implies ϕ1 ∼ ϕ2. We may therefore assume Γ0
1 is 

discrete, in which case Proposition 6.6 guarantees that ϕ1 and ϕ2 come from branched 
covers of orbifolds, as in Theorem 3.1 completing the proof. �
Remark. Given ϕ1, ϕ2 ∈ H̃ypc(S) with Gϕ̃1 = Gϕ̃2 and ϕ1 � ϕ2, we know that the ϕ2 is 
obtained by deforming O0

1 and pulling back via q0
1 . It follows that the space of equivalence 

classes of all such metrics in Hypc(S),

{ϕ ∈ H̃ypc(S) | Gϕ̃ = Gϕ̃1}/∼

is parameterized by the Teichmüller space of the orbifold O0
1. In particular, the dimension 

of this space can be arbitrarily large (depending on O0
1).
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6.3. Too many cone points implies rigidity

As another consequence of the Current Support Theorem, we show that when there 
are too many cone points, the metric is forced to be rigid.

Corollary 1.1. If ϕ ∈ Hypc(S) has at least 32(g− 1) cone points (where g is the genus of 
S) then ϕ is rigid.

Proof. If ϕ is flexible then by the Current Support Theorem there is a locally isometric 
branched covering (S, ϕ) → O over a hyperbolic orbifold O sending each of the cone 
points to an even order orbifold point. We will thus show that if there is such a branched 
covering, then the number of cone points is less than 32(g − 1).

The proof requires a repeated application of the Gauss-Bonnet Theorem, and is similar 
in spirit to the proof of the “84(g− 1) Theorem”; see e.g. [11, Theorem 7.4]. The Gauss-
Bonnet Theorem implies in our case that the total area of a hyperbolic cone surface or 
orbifold of genus g0 with n cone/orbifold points having cone angles θ1, . . . , θn is given by

Area = 4π(g0 − 1) + 2πn−
n∑

i=1
θi. (3)

Fix any ϕ ∈ Hypc(S) and observe that by (3), we have Area(ϕ) < 4π(g− 1). Suppose 
that p : (S, ϕ) → O is a branched cover as above and let d be the degree. Then we have

d = Area(ϕ)
Area(O) < 4π(g−1)

Area(O) . (4)

Next, let k be the number of cone points of ϕ and let r be the number of even-order 
orbifold points of O. We write b1, . . . , br ∈ 2Z+ to denote the orders of the orbifold 
points, so that the ith orbifold point has cone angle 2π

bi
. Let ki be the number of cone 

points that map to the ith orbifold point so that k =
∑

i ki. Now observe that since the 
cone angle of any cone point of ϕ is strictly greater than 2π, it follows that the local 
degree of p near any cone point is at least 3. This gives us

d ≥ 3 max
i

ki ≥ 3k
r .

Combining this with (4) we get

k < 4rπ(g−1)
3Area(O) . (5)

All that remains is to show that the right-hand side of (5) is at most 32(g − 1). For 
this, we consider a case-by-case analysis depending on r ≥ 1: for any fixed r, the right-
hand side is maximized when Area(O) is minimized. For r ≥ 5, we note that (3) implies 
that the area of O is at least π(r − 4), which occurs when O is a sphere with r orbifold 
points, all of order 2. In this case we have
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k < 4πr(g−1)
3π(r−4) = 4(g−1)

3

(
r

r−4

)
= 4(g−1)

3

(
1 + 4

r−4

)
≤ 20(g−1)

3 < 32(g − 1).

Again appealing to (3), for the remaining values of r one can check that the minimum 
area of an orbifold with at least r even-order orbifold points is realized by a sphere with 
n orbifold points of orders (b1, . . . , bn) described by the following table:

r Area (b1, . . . , bn) 4rπ(g−1)
3Area(O)

1 π
21 (2, 3, 7) 28(g − 1)

2 π
12 (2, 3, 8) 32(g − 1)

3 π
6 (2, 4, 6) 24(g − 1)

4 π
2 (2, 2, 2, 4) 32

3 (g − 1)

The case r = 1 is classically known to be the minimal area of any (orientable) hyper-
bolic orbifold (see e.g. [11, Theorem 7.10]). The cases r = 2, 3, 4 follow a similar argument 
to this classical result by enumerating the possibilities, appealing to the following two 
facts: (1) the genus must be zero (since positive genus and at least 2 orbifold points give
area at least 2π) and (2) we must have

n−
n∑

i=1

1
bi

> 2

if (b1, . . . , bn) are the orders of orbifold points of a hyperbolic orbifold of genus zero.
Since each quantity in the last column is at most 32(g−1), this completes the proof. �

7. Billiards

Consider a finite sided (simply connected, but not necessarily convex) polygon P in 
the hyperbolic plane and trajectories of “billiard balls”, modeled by continuous piecewise 
geodesic paths β : R → P . The billiard trajectories are geodesic segments in the interior 
of P and reflect off the sides of the polygon with angle of incidence equal to angle of 
reflection. Note that we do not consider trajectories that encounter vertices of P . We 
call these dynamical systems polygonal billiard tables in the hyperbolic plane.

As in the introduction, we assume an n–gon P comes equipped with a labeling of the 
sides by elements of the set A = {1, 2, . . . , n}, in counterclockwise cyclical order. Given a 
billiard trajectory β : R → P its corresponding bounce sequence is the biinfinite sequence 
b(β) = (. . . , b−1, b0, b1, . . .) ∈ AZ corresponding to the ordered sequence of labels of the 
sides of P that β encounters, where b0 is the first side encountered by β([0, ∞)). The 
bounce spectrum of P , denoted B(P ), is the set of all bounce sequences realized by billiard 
trajectories on P . We say that two labeled n–gons P1, P2 have the same bounce spectrum
if B(P1) = B(P2).

We recall the main theorem about billiards from the introduction.
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Billiard Rigidity Theorem. Given hyperbolic polygons P1, P2, we have B(P1) = B(P2) if 
and only if

1. P1 is isometric to P2 by a label preserving isometry, or
2. P1, P2 are reflectively tiled and there exists a label-preserving homeomorphism 

H : P1 → P2 that maps tiles to tiles, preserving their interior angles.

We note that the two cases are not mutually exclusive as the homeomorphism H
may be an isometry. Before launching into the proof of the Billiard Rigidity Theorem, 
we make the notion of reflective tilings precise and introduce the tools we need in the 
sections below.

7.1. Reflective tilings

A tiling of H is a cell decomposition so that the closed 2–cells, called the tiles, are 
compact convex hyperbolic polygons. For each tile, we require the intersection with the 
0–skeleton to be the vertices (thus having interior angles less than π). The 1–cells are 
called the edges of the tiling; an edge contained in a tile will also be called a side of the 
tile. Given a tiling T of H let R(T ) be the group generated by reflections in the (geodesic 
lines containing the) edges.

We say that a polygon in H is good if it is a finite sided compact polygon with each 
of its interior angles being an integral submultiple of π, that is, of the form πk for some 
k ∈ Z. The Poincaré polygon theorem implies that the group R generated by reflections 
in the sides of a good polygon t is discrete and the polygon is a fundamental domain 
(see, e.g. [20, Theorem 7.1.3]). The translates of t by the group R determine a tiling T
with R = R(T ). We call such a tiling of H a reflective tiling.

Lemma 7.1. A tiling T of H is reflective if and only if the fixed point set of any reflection 
in R(T ) is contained in the 1–skeleton.

Proof. If T is a reflective tiling, then all tiles sharing a vertex differ by an element of R(T )
fixing that vertex. Since the interior angles of tiles are integral submultiples of π, we see 
that the biinfinite geodesic containing any edge is contained in the 1–skeleton. Therefore, 
the reflections in sides of any tile are contained in the 1–skeleton. If there were any other 
reflection in R(T ) whose fixed point set was not contained in the 1–skeleton, then it would 
necessarily pass through the interior of a tile. Since any tile is a fundamental domain, 
this is impossible, and hence the fixed point set of any reflection is in the 1–skeleton, as 
required.

Now we assume that the fixed point set of any reflection in R(T ) is contained in the 
1–skeleton, and prove that T is reflective.

First observe that the 1–skeleton is a union of biinfinite geodesics: since the reflection 
in any edge is in R(T ), it must have its entire fixed line in the 1–skeleton by assumption, 
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and thus it follows that for every edge of T , the unique geodesic containing it is in the 
1–skeleton.

Next, we claim that R(T ) preserves the tiling. To prove this, it suffices to show that 
it preserves the collection of biiinfinite geodesics whose union is the 1–skeleton (since 
R(T ) preserves the tiling if and only if it preserves the 1–skeleton). Thus let g ∈ R(T )
be any element and η ⊂ H a biinfinite geodesic in the 1–skeleton. The reflection rη in η
is a generator of R(T ), and hence grηg−1 = rg(η), the reflection in g(η), is in R(T ). By 
assumption g(η) is contained in the 1–skeleton, as required.

Since R(T ) preserves the titling, it is discrete and acts on the set of tiles. In fact, 
this action on the tiles is transitive. To see this, take any two tiles t1, t2 and consider 
a geodesic segment from a point in the interior of t1 to a point in the interior of t2
that misses the vertex set. Then the composition of the reflections in the sides of tiles 
encountered by the geodesic (in order) maps t1 to t2.

From the proof of transitivity, we see that R(T ) is generated by reflections in the sides 
of any fixed tile t. All that remains to prove is that the interior angle at each vertex of a 
tile is an integral submultiple of π. This follows because the stabilizer of any vertex ζ is 
a dihedral group whose lines of reflection are precisely the biinfinite geodesic extensions 
of the edges adjacent to ζ. Therefore, t is a good polygon, and the tiling is reflective. �
Corollary 7.2. Given a discrete group R generated by reflections, including reflections in 
the sides of a compact polygon P , then the union of the fixed point sets of all reflections 
in R is the 1–skeleton of a reflective tiling.

Proof. Since R is discrete, the set of fixed point sets of the reflections is a locally finite 
collection of lines: otherwise there would be a sequence of such lines that meet a fixed 
compact set, and from this it is easy to construct a nonconstant sequence of elements of 
R as products of pairs of reflections that converge to the identity. For any point in the 
interior of P which is disjoint from the union of the lines, the intersection of half planes 
containing the point and bounded by the lines in our set is contained in P , and is thus a 
compact, convex polygon t. That is, the closure of one component of the complement of 
the lines in our set is a compact polygon t. Given any other point ζ in the complement 
of the union of the lines, we can construct a geodesic from a point in t to ζ, and as in 
the proof above, from this construct a sequence of reflections whose composition takes 
t to the closure of the complementary component containing ζ. It follows that the lines 
form the 1–skeleton of a tiling, and by construction, the fixed point set of any reflection 
of R is contained in it. Thus, by Lemma 7.1, the tiling is reflective. �

We now define a reflective tiling of a polygon P similarly to be a cell decomposition 
of P such that:

• the closed 2-cells (the tiles) are isometric copies of a good polygon, and any tile 
meets the 0–skeleton precisely in its vertices,
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• if two tiles share a side (or edge, i.e. 1–cell) then they differ by a reflection in that 
side, and

• if a tile t shares a vertex with P , then the interior angle of t at that vertex is an 
even integer submultiple of π, i.e. is of the form π

2k for some k ∈ N.

The third condition comes up naturally in the billiards theorem, though it is not clear 
what relevance it has outside our context. We will need the following lemma in our proof 
of the Billiard Rigidity Theorem.

Lemma 7.3. If P is a reflectively tiled polygon, then we can extend this tiling to a reflective 
tiling of H. That is, there is a reflective tiling T of H such that the reflective tiling of P
is a subcomplex of T .

Proof. Because our polygons are assumed simply connected (hence connected), any two 
tiles differ by a sequence of reflections in tiles. The entire group generated by reflections 
in any given tile defines a reflective tiling since the tile is a good polygon. �
7.2. Unfoldings

Next we define the concept of unfolding a polygonal billiard table. This connects 
polygonal billiard tables in the hyperbolic plane to the focus of the rest of this paper, 
hyperbolic cone metrics on closed orientable surfaces. This a generalization (as in [9]) of 
a classical construction (see e.g. [24]).

Given a polygon P in H, consider its double

DP = P × {0, 1}/{(x, 0) ∼ (x, 1) ∀x ∈ ∂P}

which admits a hyperbolic cone metric for which the cone points are the vertices (or more 
precisely, the identified vertices of the two copies of P ). Observe that all cone angles are 
less than 2π, however, so these metrics are not negatively curved. Note that there is a 
canonical map DP → P sending (x, t) 
→ x for t = 0, 1, which is a local isometry away 
from the identified boundaries. An unfolding of P is any locally isometric branched cover 
(S, ϕ) → DP , branched over the cone points, so that the total angle around any point 
in the pre-image of a cone point of P is greater than 2π. In particular ϕ ∈ H̃ypc(S) and 
all cone points map to cone points.

Given a hyperbolic polygon P , observe that every (biinfinite) nonsingular geodesic on 
DP projects to a (biinfinite) billiard trajectory. Moreover, every billiard trajectory arises 
in this way; indeed, this sets up a 2-to-1 correspondence between nonsingular geodesics 
on DP and billiard trajectories on P . If (S, ϕ) → DP is an unfolding (with degree k, say) 
then the nonsingular ϕ–geodesics on S project to nonsingular geodesics on DP , and all 
nonsingular geodesics arise in this way. Combined with the above, this sets up a 2k-to-1
correspondence between nonsingular ϕ–geodesics on S and billiard trajectories on P .
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For any two labeled n–gons P1 and P2 in H we may construct a common unfolding in 
the following sense. First, fix a labeled topological n–gon P : this is a CW complex with 
n vertices and n edges attached to form a circle, with the edges labeled by A in order 
cyclically, and a single 2–cell (a disk) whose attaching map is a homeomorphism to the 
1–skeleton. The cell structure on P lifts to one on its double, DP . For each i = 1, 2 fix a 
homeomorphism P → Pi respecting the labeling, which induces a homeomorphism of the 
doubles DP → DPi. A common unfolding of P1 and P2 is a branched covering S → DP

branched over the vertices together with a pair of metrics ϕ1, ϕ2 ∈ H̃ypc(S) so that the 
composition (S, ϕi) → DP → DPi is an unfolding for each i = 1, 2. Observe that there 
is a natural cell structure on S obtained by lifting the one on DP and that with respect 
to ϕi, the closed 2–cells are isometric copies of Pi: indeed, the map (S, ϕi) → DP →
DPi → Pi restricts to an isometry on each closed 2–cell. Moreover, the edges have labels 
in A, induced from those on the edges of DP .

Now, let S be a common unfolding of two n-gons P1 and P2 with corresponding 
metrics ϕ1 and ϕ2. Let p : S̃ → S denote the universal cover of S, and as usual let ϕ̃1, ϕ̃2
be the pull back metrics by p. Through the correspondence between billiard trajectories 
and nonsingular ϕi–geodesics on S we get the following:

Lemma 7.4. Suppose P1 and P2 are two n–gons (with labeled sides) and let S be a common 
unfolding with metrics ϕ1 and ϕ2, respectively. If B(P1) = B(P2) then Gϕ̃1 = Gϕ̃2 and 
ϕ2 is C0–uber-normalized with respect to ϕ1 (where C0 = cone(ϕ1), as usual).

Proof. First observe that the cell structure on S with labeled edges lifts to a cell structure 
on S̃ with labeled edges. With respect to ϕ̃i, each closed 2–cell is isometric to Pi, and as 
with S, the map (S̃, ϕ̃i) → (S, ϕi) → Pi restricts to an isometry on each 2–cell.

Now suppose B(P1) = B(P2). Let {x, y} ∈ Gϕ̃1 be the endpoints of a nonsingu-
lar ϕ̃1–geodesic η. Reading off the labels crossed gives a sequence b ∈ AZ. Since this 
nonsingular ϕ̃1–geodesic projects to a nonsingular ϕ1–geodesic in S, and then down to 
billiard trajectory in P1, it follows that b ∈ B(P1). Since B(P1) = B(P2), b ∈ B(P2) too, 
and hence there is a nonsingular ϕ̃2–geodesic η′ crossing the exact same set of edges of 
the 1–skeleton as η which projects to the billiard trajectory in P2 with bounce sequence 
b. Since η and η′ cross the exact same set of edges in S̃, they remain a bounded distance 
apart, and hence the endpoints of η′ are {x, y} ∈ Gϕ̃2 . Since endpoints of nonsingular 
ϕ̃i–geodesics are dense in Gϕ̃i

, it follows that Gϕ̃1 ⊂ Gϕ̃2 . The other inclusion follows by 
a symmetric argument and we have Gϕ̃1 = Gϕ̃2 .

To see that ϕ2 is C0–uber-normalized, first observe that C̃0 = cone(ϕ̃1) = cone(ϕ̃2)
(since the metrics come from a common unfolding of P1 and P2). Moreover, the 
π1S–equivariant bijection cone(ϕ̃1) → cone(ϕ̃2) from Proposition 4.1 is the identity. This 
follows directly from the fact that g : G(ϕ̃1) → G(ϕ̃2) preserves partitions (Lemma 4.4) 
and the proof above showing that Gϕ̃1 = Gϕ̃2 . Next we subdivide the cell structure on S
to a (C0, ϕ1)–triangulation T . We may adjust ϕ2 by a homeomorphism isotopic to the 
identity so that each of the triangles are also (C0, ϕ2)–triangles. Since the 1–cells are 
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already saddle connections with respect to both ϕ1 and ϕ2, the isotopy can be assumed 
to preserve the 1–skeleton of the cell structure, and hence is relative to C0. After further 
isotopy relative to C0 if necessary we can assume that the identity is the canonical map 
for T , and thus T is a (C0, ϕ1, ϕ2)–triangulation. Since all adjustments to ϕ2 were by 
homeomorphism isotopic to the identity relative to C0 and the result is a metric that is 
C0–uber-normalized (by Corollary 4.12), the original ϕ2 is C0–uber-normalized. �
7.3. Reflection groups

Let P1, P2 be two n–gons and S → DP → DPi, i = 1, 2, a common unfolding with 
corresponding metrics ϕ1, ϕ2. If B(P1) = B(P2), then Lemma 7.4 implies Gϕ̃1 = Gϕ̃2

and ϕ2 is C0–uber-normalized. Let p̂ : Ŝ → S be the extension to the completion of the 
universal cover of Ṡ = S \ C0, as defined in §2.2, and ϕ̂1, ϕ̂2 the pull backs of ϕ1, ϕ2 by 
p̂. By Lemma 5.1 we also have Gϕ̂1 = Gϕ̂2 . We assume that S and S̃ are given the cell 
structures with labeled edges as described in the previous section, as is Ŝ in a similar 
fashion.

Viewing Ṗ = P \{vertices of P} as an orbifold with reflectors as sides, let R = πorb
1 (Ṗ ). 

Then π1DṖ < R is an index 2 subgroup, and the maps Ṡ → DṖ → Ṗ induce inclusions

π1Ṡ < π1DṖ < R

and all three groups act on Ŝ by isometries with respect to both ϕ̂1 and ϕ̂2. For i = 1, 2
let Di : Ŝ → H be the developing maps and ρi : R → Isom(H) the corresponding 
holonomy homomorphisms. We fix some 2–cell B in Ŝ and assume that Di maps this 
2–cell to Pi, for i = 1, 2. Then, ρi sends the reflection in the jth side of B to reflection 
in the jth side of Pi.

For each i = 1, 2, let RPi
= ρi(R) < Isom(H) and note that RPi

is the group generated 
by reflections in the sides of Pi. For any ζ ∈ H let τζ denote a rotation about ζ of order 
2 and let

R0
Pi

= 〈RPi
, {τv}v∈V (Pi)〉

where V (Pi) denotes the vertex set of Pi. Note that R0
Pi

is also generated by reflections 
because each τv is in StabR0

Pi
(v), which is a dihedral group and is thus generated by its 

reflections.

Lemma 7.5. Suppose B(P1) = B(P2) and that S → DP → DPi, for i = 1, 2, is a common 
unfolding with associated metrics ϕ1, ϕ2. Further suppose that we have chosen develop-
ing maps D1, D2 : Ŝ → H as above with associated holonomy homomorphisms ρ1, ρ2, 
respectively. Then there exists an orientation preserving homeomorphism h : ∂H → ∂H

topologically conjugating ρ1 to ρ2. In particular, RP1 to RP2 are topologically conjugate 
by h, with h conjugating the reflection in the jth sides of P1 to the reflection in the jth

side of P2.
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Proof. Since B(P1) = B(P2) we have that Gϕ̃1 = Gϕ̃2 with ϕ2 being C0–uber-normalized 
by Lemma 7.4, and Gϕ̂1 = Gϕ̂2 by Lemma 5.1. Since R acts on Ŝ by isometries with 
respect to ϕ̂1 and ϕ̂2, the existence of the conjugating homeomorphism h is guaranteed 
by Proposition 5.4. From the same proposition we have that

h(ρ1(γ) · x) = ρ2(γ) · h(x)

for all γ ∈ R and x ∈ ∂H. Hence if γ ∈ R corresponds to reflection in the jth side of 
P then ρi(γ) is the reflection across the jth side of Pi. Therefore, the equation above 
expresses precisely that h conjugates reflection in the jth sides of P1 and P2. �

The following is useful in the proof of the Billiard Rigidity Theorem.

Lemma 7.6. If R0
P1

is either indiscrete or contains reflections in all three sides of a 
triangle, then P1 is billiard rigid. That is, if P2 is another polygon with B(P1) = B(P2), 
then there exists a label preserving isometry from P1 to P2.

Proof. Suppose B(P1) = B(P2). By Lemma 7.5 RP1 and RP2 are topologically conjugate 
by a homeomorphism h : ∂H → ∂H. It follows from Proposition 6.1 (after choosing a 
common unfolding and developing maps D1, D2 as above) that R0

P1
and R0

P2
are also 

topologically conjugate by h since the jth vertex of P1 and P2 are given by D1(ζj) and 
D2(ζj) for some ζj ∈ Ĉ0. If R0

P1
is indiscrete then it follows by Proposition 2.7 that h is 

in PSL2(R).
Next suppose there is a hyperbolic triangle such that R0

P1
contains reflections in all 

three of its sides; call these reflections r, s, t and let RΔ be the subgroup of R0
P1

they 
generate. If RΔ is indiscrete then so is R0

P1
and h is in PSL2(R) by the above, so assume 

RΔ is discrete. Let ΓΔ = 〈sr, tr〉 be the subgroup of RΔ generated by the two elliptic 
elements sr and tr (which must be of finite order since ΓΔ is discrete). Note that ΓΔ

is orientation preserving since its generators are. Next, observe that RΔ = 〈ΓΔ, r〉 and 
that r(sr)r = (sr)−1 ∈ ΓΔ and r(tr)r = (tr)−1 ∈ ΓΔ and hence rΓΔ = ΓΔr. It follows 
that ΓΔ is an index 2 subgroup of RΔ and in particular it is cocompact since RΔ is. 
We have shown that ΓΔ is a discrete cocompact subgroup of PSL2(R) generated by two 
finite order elements; the only such groups are Fuchsian triangle groups (see [19]). It 
follows by Lemma 2.8 that h must lie in PSL2(R).

Since h is in PSL2(R) we can extend it to an isometry of H which we also denote by 
h. Since h conjugates the reflection in the jth side of P1 to the reflection in the jth side 
of P2, it sends the geodesic extension of the jth side of P1 to the geodesic extension of 
the jth side of P2. This implies that h sends sides of P1 to sides of P2, so defines a label 
preserving isometry P1 → P2. �

Before proving the full billiard rigidity theorem in the next section, we already now 
see as a direct consequence of the above lemma that billiard rigidity is generic:



V. Erlandsson et al. / Advances in Mathematics 409 (2022) 108662 65
Corollary 7.7. If any interior angle of a polygon P is an irrational multiple of π, then P
is billiard rigid.

Proof. The assumption on P implies RP is indiscrete, and hence Lemma 7.6 implies P
is billiard rigid. �
7.4. The Billiard Rigidity Theorem and examples

We are now ready to prove the theorem.

Proof of the Billiard Rigidity Theorem. Suppose B(P1) = B(P2). If R0
P1

is indiscrete we 
are done by Lemma 7.6 so we will assume that it is discrete. Then, for each i = 1, 2 the 
union of the lines of reflection for R0

Pi
defines a reflective tiling Ti by Corollary 7.2, and 

Pi is a union of tiles.
The homeomorphism h : ∂H → ∂H from Lemma 7.5 topologically conjugates R0

P1

to R0
P2

, and so defines a bijection, h∗, between the set of oriented lines of reflection 
of R0

P1
to those of R0

P2
via the action on the endpoints of such lines. In particular, 

the lemma guarantees that h∗ sends the line containing the jth side of P1 to the line 
containing the jth side of P2. Note that h∗ also preserves concurrence of any pair of 
lines of reflection because the point of intersection is the unique fixed point of a finite 
subgroup and h conjugates this subgroup of R0

1 to the corresponding subgroup of R0
2. 

Hence, h determines an equivariant bijection H ′ from the vertices of T1 to the vertices 
of T2.

We would like to extend H ′ to a map H : (H, T1) → (H, T2) that sends P1 to P2 by 
first extending over the 1–skeleton, T (1)

1 , and then over the tiles. For each edge [v1, v2] of 
the 1–skeleton of T1, we define H|[v1,v2] to send [v1, v2] to the geodesic between H ′(v1)
and H ′(v2) by the canonical map. We have thus defined an equivariant map H|

T
(1)
1

, and 

for any line � of reflection for R0
P1

, H|
T

(1)
1

maps all vertices in � to vertices in h∗(�), and 
hence H|

T
(1)
1

(�) = h∗(�). To show that H|
T

(1)
1

is a homeomorphism, it suffices to show 
that for any line of reflection, �, the ordering of the vertices along � agrees with the 
H ′–image ordering of vertices along h∗(�).

In order to get a contradiction, suppose � is an oriented line of reflection of R0
P1

and let 
v1 and v2 be vertices along � such that H|

T
(1)
1

(v1) and H|
T

(1)
1

(v2) occur in the opposite 

order along h∗(�). Take two lines of reflection �1 and �2 of R0
P1

that are transverse to 
� at v1 and v2 respectively. If �1 and �2 do not intersect, then H|

T
(1)
1

must not reorder 
v1 and v2, since h preserves the cyclic order of the end points of �, �1, �2. If they do 
intersect, then there is a subgroup of R0

P1
generated by reflections in sides of a triangle, 

and P1 and P2 are isometric by Lemma 7.6, which is impossible if the order of v1 and v2
are reversed along � (for, in this case, H|(1)T1

is the restriction of an isometry conjugating 
R0

P1
to R0

P2
). Therefore, the order of v1 and v2 along � must be preserved by H|

T
(1)
1

, and 

hence this map is an equivariant homeomorphism from T (1)
1 to T (1)

2 . Note that the cyclic 
order of edges incident to a given vertex given by the embedding of the 1–skeleton of T1
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into H is preserved by H|
T

(1)
1

, since h preserves the cyclic order of the endpoints of the 
geodesics containing these edges. Therefore, we may extend H|

T
(1)
1

further to the faces 
of the tiling T1, giving a equivariant homeomorphism H : (H, T1) → (H, T2). Since h∗
sends the line of reflection in the jth side of P1 to the line of reflection in the jth side of 
P2, it follows that H sends P1 to P2 and preserves labels.

For every v a vertex of P1, we have τv ∈ StabR0
P1

(v), so this stabilizer is the dihedral 
group of an even sided polygon, and hence the angle of a tile at v must be of the form 
π/2k for some k ∈ N. Since the stabilizer of v in R0

P1
and H(v) in R0

P2
is isomorphic

dihedral groups, H preserves the angles of the tiles. This proves one direction of the 
theorem.

For the converse, assuming (1), we clearly get B(P1) = B(P2), so assume (2). The 
reflective tiling Ti of Pi for i = 1, 2, determines reflective tilings of H of the same names. 
Changing H by an isotopy if necessary, we may assume that it is the restriction of 
a homeomorphism H → H that conjugates R(T1) to R(T2). The homeomorphism H
induces a correspondence between the edges of P1 and P2 that preserves labelings, and 
we construct a common unfolding S → DP with associated metric ϕ1 and ϕ2 with 
respect to label preserving homeomorphisms P → Pi. The restricted map H|P1 lifts to 
a map HDP : DP1 → DP2, and we assume that our homeomorphism DP → DP2 factors 
as the composition of HDP with the homeomorphism DP → DP1.

The doubles DP1 and DP2 must branch-cover orbifolds O1 and O2, respectively, given 
by taking the quotient of H by the orientation preserving subgroup Γi = R(Ti) ∩PSL2(R). 
This can be seen as follows. Let Pi and P̄i be the two copies of the polygon used to 
construct DPi. Define the map fi : DPi → H/Γi on each of these copies. Take fi|Pi

: Pi →
H/Γi to be the inclusion of Pi into the hyperbolic plane, followed by the quotient by 
the action of Γi. Take fi|P̄i

: P̄i → H/Γi to be the embedding of the polygon into the 
hyperbolic plane (same as before) followed by reflecting it across one of its edges, followed 
by the quotient by the action of Γi. Note that it does not matter what edge we reflect 
across in this construction, since any two choices differ by the action of an element of 
Γi. This is a branched covering because it is possible to find charts in H covering DPi

on which fi is a local branched covering.
Since the homeomorphism H conjugates R(T1) to R(T2), it induces an orbifold home-

omorphism HO fitting into the following commutative diagram.

(S, ϕ1) (S, ϕ2)

DP1 DP2

O1 O2

idS

f1

HDP

f2

HO

Note that the cone points of S are sent to the cone points/vertices of DPi, which are 
then sent to even order orbifold points in Oi. This is because at each polygon vertex, the 
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incident tiles of Ti have angle π
2k , so Γi must contain a rotation through angle πk , which 

has even order.
Theorem 3.1 implies Gϕ̃1 = Gϕ̃2 , while by Lemma 4.13, the preimage C of the even 

order orbifold points of O1 is a concurrency set for (ϕ1, ϕ2) with ϕ2 being C–uber-
normalized. The cell structure on S has 2–cells that map isometrically to Pi with respect 
to ϕi via the common unfolding, and sides labeled according to the labels of P (and 
hence Pi). As usual, we lift this to a cell structure on S̃ with induced labels on the edges. 
Since every edge is simultaneously a ϕ̃1–saddle connection and ϕ̃2–saddle connection, 
Lemma 4.8 implies that for every nonsingular ϕ̃1–geodesic η, g(η) crosses the same set 
of saddle connections.

Now given any b ∈ B(P1), let η be a nonsingular ϕ̃1–geodesic that projects to the 
billiard trajectory in P1 with bounce sequence b. Recording the labels on the edges 
crossed by η we get the sequence b. Since g(η) is a ϕ̃2–geodesic that crosses the same set 
of edges as η, it projects to a billiard trajectory in P2 with the same bounce sequence 
b, and thus B(P1) ⊂ B(P2). A symmetric argument proves the other containment, and 
hence B(P1) = B(P2). �

The next proposition is an application to the Billiard Rigidity Theorem, giving con-
crete examples of both rigid and flexible polygons.

Proposition 7.8. Let n ≥ 4. Suppose P, P ′ are n–gons (with labeled sides) and write αi

and α′
i to denote the interior angle between the sides of P and P ′, respectively, labeled i

and i + 1 (indices taken modulo n). Then we have the following:

(1) If for all i, αi is an even submultiple of π, then B(P ) = B(P ′) if and only if αi = α′
i, 

for all i.
(2) If for all i, αi is not an even submultiple of π, then B(P ) = B(P ′) if and only if P

and P ′ are isometric by a label preserving isometry.

Proof. First assume that we are in case (1), and hence αi is an even submultiple of π for 
all i. If B(P ) = B(P ′) it follows immediately from the Billiard Rigidity Theorem that 
αi = α′

i for all i. For the converse, assume αi = α′
i for all i. In this case P (respectively, 

P ′) is reflectively tiled by the single tile P (respectively, P ′). Then any label preserving 
homeomorphism H : P → P ′ trivially maps tiles to tiles and preserves interior angles, 
since αi = α′

i, and so by the Billiard Rigidity Theorem we have B(P ) = B(P ′).
Now suppose none of the angles αj are even submultiples of π. If P and P ′ are 

isometric by a label preserving isometry, then we must have B(P ) = B(P ′). For the 
converse, assume B(P ) = B(P ′). First note that if there exists i with αi /∈ Qπ then 
P and P ′ are isometric by a label preserving isometry by Corollary 7.7. Hence we will 
assume that each αi is of the form piπ

qi
where pi, qi ∈ N with either pi > 1 or pi = 1

and qi odd. We will show that R0
P contains reflections in all three sides of a triangle, 

and hence by Lemma 7.6 we must have that P and P ′ are again isometric by a label 
preserving isometry. To obtain such a triangle, we first show the following claim. Let vi
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be the vertex of P corresponding to angle αi and let li be the geodesic ray emanating 
from vi, traveling into P , and bisecting the angle αi.

Claim. There exists an i such that li and li+1 intersect (where indices are taken modulo 
n).

Proof of Claim. Pick any vertex vj and cut P along lj until the polygon has been divided 
into two. Note that at least one of the resulting polygons is an n1–gon with 3 ≤ n1 < n, 
call it P1. Let vk be the vertex adjacent to vj in P1 and not incident to lj . Note that vk
is either vj+1 or vj−1. If lk intersects lj we are done. If not, cut P1 along lk, resulting in 
two new polygons, and let P2 be the one not having a subsegment of lj as a side. Then 
P2 is an n2–gon with 3 ≤ n2 < n1. We repeat the process by considering the vertex vl
adjacent to vk in P2 and not incident to lk. Note that either (k, l) = (j + 1, j + 2) or 
(k, l) = (j − 1, j − 2). This process must terminate since each step reduces the number 
of sides of the resulting polygon and if we arrive at a triangle, having a subsegment of a 
bisector l as one of its sides, the vertex vi not incident to l must have li intersecting l. �

Now, using the claim we choose i such that li and li+1 intersect. Let s denote the side 
of P labeled i + 1, that is, the side between vi and vi+1. For j = 1, 2 write αj = pjπ

qj
as 

above. If pj = 1 set l̂j to be the bisecting ray lj defined above and if pj > 1 let l̂j be 
the ray emanating from vj and making angle π

qj
with s inside P . Note that in all cases, 

l̂i and l̂i+1 must intersect and so s together with subsegments of l̂i and l̂i+1 bound a 
triangle Δ. We claim that R0

P contains reflections in all three of its sides.
To see this, first note that R0

P contains the reflection r in the side s by definition and 
it contains a rotation about vj of angle 2αj for j = 1, 2. If αj = π

qj
for some odd qj then, 

since R0
P contains rotations about vj both of angle 2π

qj
and of angle π, it also contains 

the rotation σj about vj of angle π
qj

. Reflection in l̂j = lj is then given by σi ◦ r for j = i

or by σ−1
i+1 ◦ r for j = i + 1. If αj = pjπ

qj
, for pj > 1, then R0

P contains a rotation about 
vj of angle 2pjπ

qj
and hence also the rotation σj about vj of angle 2π

qi
and reflection in l̂j

is then given by σi ◦ r or σ−1
i+1 ◦ r.

Hence R0
p contains reflections in all three sides of the triangle Δ as claimed and by 

Lemma 7.6 we are done. �
In case (1) of the proposition we can also compute the dimension of the space of 

polygons having the same bounce spectrum. To state this precisely, let

P(P ) = {P ′ ⊂ H | B(P ′) = B(P )}/∼,

where P ′ ∼ P ′′ if there is a label preserving isometry from P ′ to P ′′.

Corollary 7.9. If P is an n–gon and all interior angles are even submultiples of π, then 
P(P ) ∼= Rn−3.
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Fig. 15. Arcs subdividing a 7–gon with all acute interior angles into one pentagon, one hexagon, and three 
quadrilaterals. (The dots indicate orthogonal intersections.) The deformations of the polygon, preserving 
the interior angles are parameterized by the lengths �1, �2, �3, �4.

Proof. Let αj be the interior angle between side j and j+1 of P for all j (indices taking 
modulo n). According to Proposition 7.8, P(P ) is precisely the set of polygons P ′ (up 
to label preserving isometry) for which the interior angle between the side j and j′ is αj

for all j. This space is well-known to be homeomorphic to Rn−3
+ , but we briefly explain 

this for completeness. One approach to this is to construct a polygonal analogue of a 
pants decomposition and Fenchel-Nielsen coordinates (see e.g. [22, Section 4.6]) which 
we sketch now.

Take a maximal collection of pairwise disjoint arcs in P connecting distinct, non-
adjacent sides, so that no two arcs connect the same pair of sides. The number of such 
arcs is precisely n − 3. Replacing each arc by a minimal length geodesic connecting 
the same sides, these geodesic segments produce a decomposition of P into right-angled 
hexagons, pentagons with at most one non-right angle (which occurs at a vertex of P ) 
and quadrilaterals with at most two non-right angles (each of which occur at a vertex of 
P ). We note that if angles αj and αj+1 are both π2 and if one of the arcs has endpoints 
on side j and j + 2 (indices modulo n), then the geodesic replacement arc is the side 
labeled j + 1.

The lengths of the geodesic arcs (�1, . . . , �n−3) ∈ Rn−3
+ serve as parameters since 

the space of deformations of each of the complementary polygons, preserving all angles, 
is parameterized by these lengths (see e.g. [22, Section 4.6] for the case of a right-
angled hexagon–the other cases are simpler; cf. [1, §7.17-7.19]). Fig. 15 illustrates an 
example. �

By the Billiard Rigidity Theorem, a polygon P1 can only be billiard flexible if it ad-
mits a reflective tiling for which the tile t is a good polygon. Moreover, we can deform 
P1 to a non-isometric polygon P2 with B(P1) = B(P2) precisely by deforming the tile t. 
The deformation space of t, preserving the interior angles, has dimension (n − 3) (and 
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is a point if n = 3) by the same argument as the one given in the proof of Corollary 7.9. 
This gives us the following.

Corollary 1.2 A hyperbolic polygon P is billiard flexible if and only if it is reflectively 
tiled with a non-triangular tile. �
7.5. Generalized diagonals

As discussed in the introduction, a generalized diagonal in a polygon P is finite billiard 
trajectory γ : [a, b] → P that starts and ends at a vertex of the polygon. Such a segment 
has a finite bounce sequence b(γ) = (b1, . . . , bn) and we denote the set of all such finite 
bounce sequences BΔ(P ).

Theorem 1.3 Given polygons P1, P2 ⊂ H, we have BΔ(P1) = BΔ(P2) if and only if one 
of the two conclusions of the Billiard Rigidity Theorem holds.

Proof. First, suppose BΔ(P1) = BΔ(P2) and let S be a common unfolding with metrics 
ϕ1 and ϕ2, respectively. The same idea as in the proof of Lemma 7.4 implies that every 
ϕ̃1–saddle connection is uniformly close to some ϕ̃2–saddle connection (possibly having 
different initial/terminal endpoints) by considering the associated bounce sequences. 
Now observe that any non-singular ϕ̃i–geodesic is a limit of ϕ̃i–saddle connections, for 
i = 1, 2. Given a ϕ̃1–geodesic η which is a limit of ϕ̃1–saddle connections, η straightens to 
a basic ϕ̃2–geodesic, and hence Gϕ̃1 ⊂ Gϕ̃2 . Interchanging the roles of ϕ̃1 and ϕ̃2, we get 
equality Gϕ̃1 = Gϕ̃2 . At this point, the rest of the proof of the Billiard Rigidity Theorem 
can be carried out verbatim since Gϕ̃1 = Gϕ̃2 is the only fact that is used after choosing 
a common unfolding.

For the reverse implication, we assume either (1) or (2) of the Billiard Rigidity The-
orem holds. As in the proof of the Billiard Rigidity Theorem we choose a common 
unfolding S with associated metrics ϕ1 and ϕ2 and deduce that Gϕ1 = Gϕ2 . As in that 
proof, appealing to Lemma 4.13 we see that the preimage of the even order orbifold points 
is a concurrency set C ⊂ S for (ϕ1, ϕ2), with ϕ2 C–uber-normalized with respect to ϕ1. 
By Lemma 4.11 any ϕ̃1–saddle connection straightens to a ϕ̃2–saddle connection in the 
complement of C. As above we have a cell structure on S̃ whose 2–cells are copies of the 
topological polygon P with labeled 1–cells, and it follows that a ϕ̃1–saddle connection 
crosses exactly the same sequence of labeled 1–cells as the ϕ̃2–straightening (since the 
1–cells are geodesics with respect to both metrics). Therefore, every sequence in BΔ(P1)
is a sequence in BΔ(P2), and vice-versa, proving BΔ(P1) = BΔ(P2), as required. �
7.6. Connection to prior results and questions

In [23], Ullmo and Giannoni consider compact hyperbolic polygons P ⊂ H for which 
the interior angles are all acute. The authors provide a nearly complete description of 
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the bounce spectra for such a polygon. The ideal objective is to describe finite words 
in the label set A that are forbidden in a bounce sequence of a billiard trajectory in 
P , and then characterize bounce sequences precisely as those that do not contain such 
subwords. The authors do not quite obtain such a set, but do provide approximations 
to this. Their analysis divides up into two cases: billiards in good polygons (which they 
call tiling billiards) and the rest.

In the case that the polygon P is not good, for every N > 0, Ullmo-Giannoni produce 
two sets of words of length at most N ; forbidden words and authorized words. The 
authorized words have the property that any sequence for which all subwords of length 
at most N are authorized are necessarily bounce sequences of a billiard trajectory in 
P (thus, forbidden words provide necessary conditions and authorized words provide 
sufficient conditions). They also show that as N tends to infinity, the ratio of the number 
of authorized to non-forbidden words tends to 1. It would be interesting to see if, at least 
for acute polygons, one could push this analysis to give another proof of rigidity for such 
polygons.

To describe the situation for a good polygon P , let π
kj

denote the interior angle at 
the vertex of P between sides j and j + 1 (modulo n), where kj > 2 is an integer for 
all j. In this case, Ullmo-Giannoni show that length 2 subwords which simply repeat a 
label are forbidden as are sequences of the form j, j +1, j, j +1, . . . or j +1, j, j +1, j, . . .
of length greater than kj and prove that this almost characterizes bounce sequences of 
billiard trajectories. More precisely, they show that given a sequence that contains no 
forbidden words as above, after possibly replacing some of the length kj subwords of the 
form j, j + 1, j, j + 1, . . . with an equal length word of the form j + 1, j, j + 1, j, . . . (or 
vice versa), for each j, then the resulting sequence is the bounce sequence of a billiard 
trajectory in P . See also Nagar–Singh [17].

In the case that P1 and P2 are nonisometric, good, acute n–gons for which the corre-
sponding interior angles (with respect to fixed labelings) are equal, their results provide 
an interesting connection to our work. For concreteness, say the angle between sides j and 
j+1 is π

kj
, as above. If P1 is billiard rigid (for example, P1 could be as in case (2) of 7.8) 

then B(P1) �= B(P2). On the other hand, the results of [23] described in the previous para-
graph imply that given any bounce sequence b ∈ B(P2), after possibly replacing some of 
the subwords of the form j, j+1, j, j+1, . . . of length kj by the length kj word of the form 
j+1, j, j+1, j, . . . (or vice versa) for all j, one obtains a bounce sequence b′ ∈ B(P1). In 
particular, the difference between the difference between B(P1) and B(P2) is quite subtle.

Questions. We end with some questions and possible future directions. To start, it would 
be interesting to investigate further to what extent Ullmo-Giannoni’s methods and ours 
are complementary. In particular:

(Q1) Can one prove the Billiard Rigidity Theorem using the techniques of [23] (perhaps 
restricted to polygons with only acute interior angles)?
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In an earlier paper Ullmo-Giannoni [13] characterized the bounce spectra for ideal 
hyperbolic polygons; that is, polygons all of whose vertices are on ∂H (see also Nagar–
Singh [17]). In this setting, the authors find that bounce sequences of an ideal n–gon are 
precisely the biinfinite sequences never repeating a label and not containing an infinite 
repeating string of the form

i, i + 1 = i, i + 1, i, i + 1, i, i + 1, . . .

either forward or backward, with indices taken modulo n. In particular, any two ideal 
n–gons, P1 and P2 have the same bounce spectra, B(P1) = B(P2). This fits into the Bil-
liard Rigidity Theorem if one extends the notion of reflective tiling to allow vertices at 
infinity (where there are no longer any conditions on interior angles at such points). In-
deed, then P1 and P2 are reflectively tiled with a single tile (themselves). Observe that re-
flections in the sides of an ideal polygon P generate a reflective tiling of H by copies of P .

Since ideal polygons are only a special case of noncompact polygons, one could further 
ask what happens for noncompact polygons in general (some special cases are considered 
in Nagar–Singh [17]).

(Q2) Is the Billiard Rigidity Theorem true if one allows for finite area noncompact 
hyperbolic polygons? How about infinite area polygons?

Note that noncompact polygons could also have infinitely many sides (even in the 
finite area, convex case), and so some care should be taken in clearly defining what is 
meant by a cyclic labeling of the sides. This question also makes sense in the case of 
Euclidean polygons of infinite area.

(Q3) Is there some version of the Billiard Rigidity Theorem for infinite area Euclidean 
polygons?

Another natural question is whether a version of Billiard Rigidity Theorem holds 
in higher dimensions. Coding billiards in three-dimensional hyperbolic polyhedra was 
considered in [21].

(Q4) Is there a version of the Billiard Rigidity Theorem for billiards in Euclidean or 
hyperbolic n–space, n ≥ 3?

Returning to dimension 2, we note that in order to answer the special case of (Q2) 
using our methods, one would first need a more general version of the Current Support 
Theorem. Of course, we could also formulate this question for infinite area hyperbolic or 
Euclidean cone surfaces (cf. [15]), but we stick to the following concrete instance.

(Q5) Is the Current Support Theorem true for noncompact, finite area, complete, neg-
atively curved, hyperbolic cone surfaces?
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The universal cover has a circle at infinity in this case, though now the action has 
parabolic fixed points on the boundary associated to the “cusps” of S. We note that even 
under the finite area assumption, one could still have infinitely many cone points, so the 
cusps here are not necessarily standard, and there are various technical issues one must 
consider. For such a metric, we would take Gϕ̃ to be the closure of the space of endpoints 
of nonsingular geodesics, which should coincide with the support of a Liouville current, 
though again some care must be taken in defining such an object in this setting.

There are other ways in which one could try to generalize the Current Support The-
orem. As we mentioned in the introduction, not only are hyperbolic and Euclidean cone 
metrics determined by their Liouville currents, but so are any (variable) negative or 
non-positively curved cone metrics, by a result of Constantine [6]. Hence it is natural to 
ask to what extent they are determined by only their support:

(Q6) Is there a version of the Current Support Theorem for negative or nonpositively 
curved cone metrics?

We note that the methods used in this paper to prove the Current Support Theorem 
used the fact that Ŝ is locally isometric to H in a crucial way (and in [9] the Euclidean set-
ting was essential). In particular, it seems highly unlikely that (Q6) would follow by direct 
generalizations of the techniques used in this paper. The statement itself is likely to be 
quite different: for example, the second conclusion of the Current Support Theorem would 
certainly have to be relaxed to allow lifting deformations via branched covers of negatively 
curved orbifolds, but an even more general alternative seems likely. There is also nothing 
stopping one from asking similar questions in the case of spherical surfaces/polygons, 
but it seems likely the techniques will stray even further from those considered here.
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