124 research outputs found

    Stuck in the twilight zone? March 2019 municipal elections in Turkey

    Full text link
    After 16 years of Tayyip Erdoğan in power and with almost total control of the bu­reau­cracy and the mainstream media, it has become hard to imagine a Turkey in which he and his party, the Justice and Development Party (AKP), would not win an election. Yet, after a long nail-biter of an election night, Turkey woke up on April 1 to results indicating a major shift: Defying expectations, Turkish voters had delivered a challenge to the dominance of the governing coalition. While this came as a sur­prise to some, it points to growing discontent among voters that was able to find expression through institutional means. This was made possible by various parts of the opposition that ran effective alliance strategies and campaigns as well as the elec­tion-night process. This accomplishment of the opposition, however, does not neces­sarily mean an easy shift to a democratic path in Turkey. Much depends on how various actors in the governing coalition respond to this new picture. (Autorenreferat

    Construction of Satanism in Turkish Secularist and Islamist Newspapers

    Get PDF
    On 22 September 1999 the dead body of an 18-yearold girl was found in a cemetery in Istanbul, Turkey. Massive media coverage was launched when the police discovered that she had been killed by two young men and a young woman, who, claiming to be Satanists, testified that one of them had orders from Satan to perform the sacrifice. When the public prosecutor used the description of Satanism in the formal charges brought against the accused, Satanism entered the legal documents as a new crime for the first time in Turkish legal history. The three perpetrators were judged guilty of murder and were sentenced to a total of 25 years in prison

    Classical capacity of bosonic broadcast communication and a new minimum output entropy conjecture

    Full text link
    Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multi-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is that channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. In this paper, we propose a new minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this new conjecture, but again a full proof is not available.Comment: 13 pages, 7 figure

    Image quality in double- and triple-intensity ghost imaging with classical partially polarized light

    Full text link
    Classical ghost imaging is a correlation-imaging technique in which the image of the object is found through intensity correlations of light. We analyze three different quality parameters, namely the visibility, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR), to assess the performance of double- and triple-intensity correlation-imaging setups. The source is a random partially polarized beam of light obeying Gaussian statistics and the image quality is evaluated as a function of the degree of polarization (DoP). We show that the visibility improves when the DoP and the order of imaging increase, while the SNR behaves oppositely. The CNR is for the most part independent of DoP and the imaging order. The results are important for the development of new imaging devices using partially polarized light.Comment: Added 2 references, corrected a few typos and revised text slightly. Results unchange

    Three lateral osteotomy designs for bilateral sagittal split osteotomy: biomechanical evaluation with three-dimensional finite element analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The location of the lateral osteotomy cut during bilateral sagittal split osteotomy (BSSO) varies according to the surgeon's preference, and no consensus has been reached regarding the ideal location from the perspective of biomechanics. The purpose of this study was to evaluate the mechanical behavior of the mandible and screw-miniplate system among three lateral osteotomy designs for BSSO by using three-dimensional (3-D) finite element analysis (FEA).</p> <p>Methods</p> <p>The Trauner-Obwegeser (TO), Obwegeser (Ob), and Obwegeser-Dal Pont (OD) methods were used for BSSO. In all the FEA simulations, the distal segments were advanced by 5 mm. Each model was fixed by using miniplates. These were applied at four different locations, including along Champy's lines, to give 12 different FEA miniplate fixation methods. We examined these models under two different loads.</p> <p>Results</p> <p>The magnitudes of tooth displacement, the maximum bone stress in the vicinity of the screws, and the maximum stress on the screw-miniplate system were less in the OD method than in the Ob and TO methods at all the miniplate locations. In addition, Champy's lines models were less than those at the other miniplate locations.</p> <p>Conclusions</p> <p>The OD method allows greater mechanical stability of the mandible than the other two techniques. Further, miniplates placed along Champy's lines provide greater mechanical advantage than those placed at other locations.</p

    Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated.</p> <p>Results</p> <p>Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique.</p> <p>Conclusions</p> <p>The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.</p

    All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations

    Get PDF
    In ultra-high resolution (UHR-) optical coherence tomography (OCT) group velocity dispersion (GVD) must be corrected for in order to approach the theoretical resolution limit. One approach promises not only compensation, but complete annihilation of even order dispersion effects, and that at all sample depths. This approach has hitherto been demonstrated with an experimentally demanding ‘balanced detection’ configuration based on using two detectors. We demonstrate intensity correlation (IC) OCT using a conventional spectral domain (SD) UHR-OCT system with a single detector. IC-SD-OCT configurations exhibit cross term ghost images and a reduced axial range, half of that of conventional SD-OCT. We demonstrate that both shortcomings can be removed by applying a generic artefact reduction algorithm and using analytic interferograms. We show the superiority of IC-SD-OCT compared to conventional SD-OCT by showing how IC-SD-OCT is able to image spatial structures behind a strongly dispersive silicon wafer. Finally, we question the resolution enhancement of 2–? that IC-SD-OCT is often believed to have compared to SD-OCT. We show that this is simply the effect of squaring the reflectivity profile as a natural result of processing the product of two intensity spectra instead of a single spectrum
    corecore