320 research outputs found

    Observational aspects of IMF draping-related magnetosheath accelerations for northward IMF

    Get PDF
    Acceleration of magnetosheath plasma resulting from the draping of the interplanetary magnetic field (IMF) around the magnetosphere can give rise to flow speeds that exceed that of the solar wind (VSW) by up to ~60%. Three case event studies out of 34 identified events are described. We then present a statistical study of draping-related accelerations in the magnetosheath. Further, we compare the results with the recent theory of Erkaev et al. (2011, 2012). We present a methodology to help distinguish draping-related accelerations from those caused by magnetic reconnection. To rule out magnetopause reconnection at low latitudes, we focus mainly on the positive Bz phase during the passage of interplanetary coronal mass ejections (ICMEs), as tabulated in Richardson and Cane (2010) for 1997–2009, and adding other events from 2010. To avoid effects of high-latitude reconnection poleward of the cusp, we also consider spacecraft observations made at low magnetic latitudes. We study the effect of upstream Alfvén Mach number (MA) and magnetic local time (MLT) on the speed ratio V/VSW. The comparison with theory is good. Namely, (i) flow speed ratios above unity occur behind the dawn–dusk terminator, (ii) those below unity occur on the dayside magnetosheath, and (iii) there is a good general agreement in the dependence of the V ratio on MA

    Rate of steady-state reconnection in an incompressible plasma

    Get PDF
    The reconnection rate is obtained for the simplest case of 2D symmetric reconnection in an incompressible plasma. In the short note (Erkaev et al., Phys. Rev. Lett.,84, 1455 (2000)), the reconnection rate is found by matching the outer Petschek solution and the inner diffusion region solution. Here the details of the numerical simulation of the diffusion region are presented and the asymptotic procedure which is used for deriving the reconnection rate is described. The reconnection rate is obtained as a decreasing function of the diffusion region length. For a sufficiently large diffusion region scale, the reconnection rate becomes close to that obtained in the Sweet-Parker solution with the inverse square root dependence on the magnetic Reynolds number, determined for the global size of the current sheet. On the other hand, for a small diffusion region length scale, the reconnection rate turns out to be very similar to that obtained in the Petschek model with a logarithmic dependence on the magnetic Reynolds number. This means that the Petschek regime seems to be possible only in the case of a strongly localized conductivity corresponding to a small scale of the diffusion region.Comment: 11 pages, 3 figure

    Precise photoionisation treatment and hydrodynamic effects in atmospheric modelling of warm and hot Neptunes

    Full text link
    Observational breakthroughs in the exoplanet field of the last decade motivated the development of numerous theoretical models describing atmospheres and mass loss, which is believed to be one of the main drivers of planetary evolution. We aim to outline for which types of close-in planets in the Neptune-mass range the accurate treatment of photoionisation effects is most relevant concerning atmospheric escape and the parameters relevant for interpreting observations. We developed the CHAIN (Cloudy e Hydro Ancora INsieme) model combining 1D hydrodynamic upper atmosphere model with the non-LTE photoionisation and radiative transfer code Cloudy accounting for photochemistry, detailed atomic level populations, and chemical reactions for all elements up to zinc. We apply CHAIN to model the upper atmospheres of a range of Neptune-like planets with masses between 1 and 50 M⊕_{\oplus}, varying also the orbital parameters. For the majority of warm and hot Neptunes, we find slower and denser outflows, with lower ion fractions, compared to the predictions of the hydrodynamic model alone. Furthermore, we find significantly different temperature profiles between CHAIN and the hydrodynamic model alone, though the peak values are similar for similar atmospheric compositions. The mass-loss rates predicted by CHAIN are higher for hot, strongly irradiated planets and lower for more moderate planets. All differences between the two models are strongly correlated with the amount of high-energy irradiation. Finally, we find that the hydrodynamic effects impact significantly ionisation and heating. The impact of the precise photoionisation treatment provided by Cloudy strongly depends on the system parameters. This suggests that some of the simplifications typically employed in hydrodynamic modelling might lead to systematic errors when studying planetary atmospheres, even at a population-wide level.Comment: 23 pages, 16 figures; Accepted for publication in A&

    Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    Full text link
    The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M_E, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure

    Two-dimensional MHD model of the reconnection diffusion region

    Get PDF
    International audienceMagnetic reconnection is an important process providing a fast conversion of magnetic energy into thermal and kinetic plasma energy. In this concern, a key problem is that of the resistive diffusion region where the reconnection process is initiated. In this paper, the diffusion region is associated with a nonuniform conductivity localized to a small region. The nonsteady resistive incompressible MHD equations are solved numerically for the case of symmetric reconnection of antiparallel magnetic fields. A Petschek type steady-state solution is obtained as a result of time relaxation of the reconnection layer structure from an arbitrary initial stage. The structure of the diffusion region is studied for various ratios of maximum and minimum values of the plasma resistivity. The effective length of the diffusion region and the reconnection rate are determined as functions of the length scale and the maximum of the resistivity. For sufficiently small length scale of the resistivity, the reconnection rate is shown to be consistent with Petschek's formula. By increasing the resistivity length scale and decreasing the resistivity maximum, the reconnection layer tends to be wider, and correspondingly, the reconnection rate tends to be more consistent with that of the Parker-Sweet regime
    • …
    corecore