397 research outputs found

    Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of E. coli Isolated from the Feces of Healthy Subjects

    Get PDF
    Escherichia coli may innocuously colonize the intestine of healthy subjects or may instigate infections in the gut or in other districts. This study investigated intestinal E. coli isolated from 20 healthy adults. Fifty-one strains were genotyped by molecular fingerprinting and analyzed for genetic and phenotypic traits, encompassing the profile of antibiotic resistance, biofilm production, the presence of surface structures (such as curli and cellulose), and their performance as recipients in conjugation experiments. A phylogroup classification and analysis of 34 virulence determinants, together with genes associated to the pks island (polyketide-peptide genotoxin colibactin) and conjugative elements, was performed. Most of the strains belonged to the phylogroups B1 and B2. The different phylogroups were separated in a principal coordinate space, considering both genetic and functional features, but not considering pulsed-field gel electrophoresis. Within the B2 and F strains, 12 shared the pattern of virulence genes with potential uropathogens. Forty-nine strains were sensitive to all the tested antibiotics. Strains similar to the potential pathogens innocuously inhabited the gut of healthy subjects. However, they may potentially act as etiologic agents of extra-intestinal infections and are susceptible to a wide range of antibiotics. Nevertheless, there is still the possibility to control infections with antibiotic therapy

    Democratized image analytics by visual programming through integration of deep models and small-scale machine learning

    Get PDF
    Analysis of biomedical images requires computational expertize that are uncommon among biomedical scientists. Deep learning approaches for image analysis provide an opportunity to develop user-friendly tools for exploratory data analysis. Here, we use the visual programming toolbox Orange (http://orange.biolab.si) to simplify image analysis by integrating deep-learning embedding, machine learning procedures, and data visualization. Orange supports the construction of data analysis workflows by assembling components for data preprocessing, visualization, and modeling. We equipped Orange with components that use pre-trained deep convolutional networks to profile images with vectors of features. These vectors are used in image clustering and classification in a framework that enables mining of image sets for both novel and experienced users. We demonstrate the utility of the tool in image analysis of progenitor cells in mouse bone healing, identification of developmental competence in mouse oocytes, subcellular protein localization in yeast, and developmental morphology of social amoebae

    The effect of personality traits and knowledge on the quality of decisions in supply chains

    Get PDF
    Supply chain and operations management requires frequent decision making, and decisions are importantly influenced by the personality traits and knowledge of the decision maker. Thus, we analyse the effect of those factors on the confidence and quality of decisions taken in the context of supply chain management. The data were gathered via an online supply chain simulation game where subjects needed to make several decisions. Personality traits of the participants were tested using the Big Five model. The structural model was estimated using the partial least squares structural equation modelling approach. We found that decision-makers with lower levels of extraversion and agreeableness and higher levels of conscientiousness and openness make better decisions. On the other hand, neuroticism and agreeableness negatively affect confidence in decisions. Tested knowledge positively influences both decision-makers’ confidence in and the quality of their decisions while self-reported knowledge has no significant effect. Therefore, the companies should carefully consider how an individual’s personality matches the type of job at hand and rely on tested instead of self-reported knowledge

    A mother's sacrifice: what is she keeping for herself?

    Get PDF
    Individual cells of the budding yeast, Saccharomyces cerevisiae, have a limited life span and undergo a form of senescence termed replicative aging. Replicative life span is defined as the number of daughter cells produced by a yeast mother cell before she ceases dividing. Replicative aging is asymmetric: a mother cell ages but the age of her daughter cells is 'reset' to zero. Thus, one or more senescence factors have been proposed to accumulate asymmetrically between mother and daughter yeast cells and lead to mother-specific replicative senescence once a crucial threshold has been reached. Here we evaluate potential candidates for senescence factors and age-associated phenotypes and discuss potential mechanisms underlying the asymmetry of replicative aging in budding yeast

    Five-years surveillance of invasive aspergillosis in a university hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the most common invasive fungal infection, invasive aspergillosis (IA) remains a serious complication in immunocompromised patients, leading to increased mortality. Antifungal therapy is expensive and may result in severe adverse effects.</p> <p>The aim of this study was to determine the incidence of invasive aspergillosis (IA) cases in a tertiary care university hospital using a standardized surveillance method.</p> <p>Methods</p> <p>All inpatients at our facility were screened for presence of the following parameters: positive microbiological culture, pathologist's diagnosis and antifungal treatment as reported by the hospital pharmacy. Patients fulfilling one or more of these indicators were further reviewed and, if appropriate, classified according to international consensus criteria (EORTC).</p> <p>Results</p> <p>704 patients were positive for at least one of the indicators mentioned above. Applying the EORTC criteria, 214 IA cases were detected, of which 56 were proven, 25 probable and 133 possible. 44 of the 81 (54%) proven and probable cases were considered health-care associated. 37 of the proven/probable IA cases had received solid organ transplantation, an additional 8 had undergone stem cell transplantation, and 10 patients were suffering from some type of malignancy. All the other patients in this group were also suffering from severe organic diseases, required long treatment and experienced several clinical complications. 7 of the 56 proven cases would have been missed without autopsy. After the antimycotic prophylaxis regimen was altered, we noticed a significant decrease (p = 0.0004) of IA during the investigation period (2003-2007).</p> <p>Conclusion</p> <p>Solid organ and stem cell transplantation remain important risk factors for IA, but several other types of immunosuppression should also be kept in mind. Clinical diagnosis of IA may be difficult (in this study 13% of all proven cases were diagnosed by autopsy only). Thus, we confirm the importance of IA surveillance in all high-risk patients.</p

    Peroral Amphotericin B Polymer Nanoparticles Lead to Comparable or Superior In Vivo Antifungal Activity to That of Intravenous Ambisome® or Fungizone™

    Get PDF
    Background: Despite advances in the treatment, the morbidity and mortality rate associated with invasive aspergillosis remains unacceptably high (70–90%) in immunocompromised patients. Amphotericin B (AMB), a polyene antibiotic with broad spectrum antifungal activity appears to be a choice of treatment but is available only as an intravenous formulation; development of an oral formulation would be beneficial as well as economical. Methodology: Poly(lactide-co-glycolode) (PLGA) nanoparticles encapsulating AMB (AMB-NPs) were developed for oral administration. The AMB-NPs were 113±20 nm in size with ~70% entrapment efficiency at 30% AMB w/w of polymer. The in vivo therapeutic efficacy of oral AMB-NPs was evaluated in neutropenic murine models of disseminated and invasive pulmonary aspergillosis. AMB-NPs exhibited comparable or superior efficacy to that of Ambisome® or Fungizone™ administered parenterally indicating potential of NPs as carrier for oral delivery. Conclusions: The present investigation describes an efficient way of producing AMB-NPs with higher AMB pay-load and entrapment efficiency employing DMSO as solvent and ethanol as non-solvent. The developed oral formulation was highly efficacious in murine models of disseminated aspergillosis as well as an invasive pulmonary aspergillosis, which is refractory to treatment with IP Fungizone™and responds only modestly to AmBisome®

    Effects of calorie restriction on life span of microorganisms

    Get PDF
    Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism

    Aerosolized Delivery of Antifungal Agents

    Get PDF
    Pulmonary infections caused by Aspergillus species are associated with significant morbidity and mortality in immunocompromised patients. Although the treatment of pulmonary fungal infections requires the use of systemic agents, aerosolized delivery is an attractive option in prevention because the drug can concentrate locally at the site of infection with minimal systemic exposure. Current clinical evidence for the use of aerosolized delivery in preventing fungal infections is limited to amphotericin B products, although itraconazole, voriconazole, and caspofungin are under investigation. Based on conflicting results from clinical trials that evaluated various amphotericin B formulations, the routine use of aerosolized delivery cannot be recommended. Further research with well-designed clinical trials is necessary to elucidate the therapeutic role and risks associated with aerosolized delivery of antifungal agents. This article provides an overview of aerosolized delivery systems, the intrapulmonary pharmacokinetic properties of aerosolized antifungal agents, and key findings from clinical studies
    corecore