8 research outputs found

    Wastewater-based surveillance identifies start to the pediatric respiratory syncytial virus season in two cities in Ontario, Canada

    Get PDF
    IntroductionDetection of community respiratory syncytial virus (RSV) infections informs the timing of immunoprophylaxis programs and hospital preparedness for surging pediatric volumes. In many jurisdictions, this relies upon RSV clinical test positivity and hospitalization (RSVH) trends, which are lagging indicators. Wastewater-based surveillance (WBS) may be a novel strategy to accurately identify the start of the RSV season and guide immunoprophylaxis administration and hospital preparedness.MethodsWe compared citywide wastewater samples and pediatric RSVH in Ottawa and Hamilton between August 1, 2022, and March 5, 2023. 24-h composite wastewater samples were collected daily and 5 days a week at the wastewater treatment facilities in Ottawa and Hamilton, Ontario, Canada, respectively. RSV WBS samples were analyzed in real-time for RSV by RT-qPCR.ResultsRSV WBS measurements in both Ottawa and Hamilton showed a lead time of 12 days when comparing the WBS data set to pediatric RSVH data set (Spearman’s ρ = 0.90). WBS identify early RSV community transmission and declared the start of the RSV season 36 and 12 days in advance of the provincial RSV season start (October 31) for the city of Ottawa and Hamilton, respectively. The differing RSV start dates in the two cities is likely associated with geographical and regional variation in the incidence of RSV between the cities.DiscussionQuantifying RSV in municipal wastewater forecasted a 12-day lead time of the pediatric RSVH surge and an earlier season start date compared to the provincial start date. These findings suggest an important role for RSV WBS to inform regional health system preparedness, reduce RSV burden, and understand variations in community-related illness as novel RSV vaccines and monoclonal antibodies become available

    Quantifying Individual Response to PRRSV Using Dynamic Indicators of Resilience Based on Activity

    Get PDF
    Pigs are faced with various perturbations throughout their lives, some of which are induced by management practices, others by natural causes. Resilience is described as the ability to recover from or cope with a perturbation. Using these data, activity patterns of an individual, as well as deviations from these patterns, can potentially be used to quantify resilience. Dynamic indicators of resilience (DIORs) may measure resilience on a different dimension by calculating variation, autocorrelation and skewness of activity from the absolute activity data. The aim of this study was to investigate the potential of using DIORs of activity, such as average, root mean square error (RMSE), autocorrelation or skewness as indicators of resilience to infection with the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). For this study, individual activity was obtained from 232 pigs equipped with ear tag accelerometers and inoculated with PRRSV between seven and 9 weeks of age. Clinical scores were assigned to each individual at 13 days post-challenge and used to distinguish between a resilient and non-resilient group. Mortality post-challenge was also recorded. Average, RMSE, autocorrelation and skewness of activity were calculated for the pre- and post-challenge phases, as well as the change in activity level pre- vs. post-challenge (i.e., delta). DIORs pre-challenge were expected to predict resilience to PRRSV in the absence of PRRSV infection, whereas DIORs post-challenge and delta were expected to reflect the effect of the PRRSV challenge. None of the pre-challenge DIORs predicted morbidity or mortality post-challenge. However, a higher RMSE in the 3 days post-challenge and larger change in level and RMSE of activity from pre- to post-challenge tended to increase the probability of clinical signs at day 13 post-infection (poor resilience). A higher skewness post-challenge (tendency) and a larger change in skewness from pre- to post-challenge increased the probability of mortality. A decrease in skewness post-challenge lowered the risk of mortality. The post-challenge DIOR autocorrelation was neither linked to morbidity nor to mortality. In conclusion, results from this study showed that post-challenge DIORs of activity can be used to quantify resilience to PRRSV challenge

    Quantifying Individual Response to PRRSV Using Dynamic Indicators of Resilience Based on Activity

    Get PDF
    Pigs are faced with various perturbations throughout their lives, some of which are induced by management practices, others by natural causes. Resilience is described as the ability to recover from or cope with a perturbation. Using these data, activity patterns of an individual, as well as deviations from these patterns, can potentially be used to quantify resilience. Dynamic indicators of resilience (DIORs) may measure resilience on a different dimension by calculating variation, autocorrelation and skewness of activity from the absolute activity data. The aim of this study was to investigate the potential of using DIORs of activity, such as average, root mean square error (RMSE), autocorrelation or skewness as indicators of resilience to infection with the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). For this study, individual activity was obtained from 232 pigs equipped with ear tag accelerometers and inoculated with PRRSV between seven and 9 weeks of age. Clinical scores were assigned to each individual at 13 days post-challenge and used to distinguish between a resilient and non-resilient group. Mortality post-challenge was also recorded. Average, RMSE, autocorrelation and skewness of activity were calculated for the pre- and post-challenge phases, as well as the change in activity level pre- vs. post-challenge (i.e., delta). DIORs pre-challenge were expected to predict resilience to PRRSV in the absence of PRRSV infection, whereas DIORs post-challenge and delta were expected to reflect the effect of the PRRSV challenge. None of the pre-challenge DIORs predicted morbidity or mortality post-challenge. However, a higher RMSE in the 3 days post-challenge and larger change in level and RMSE of activity from pre- to post-challenge tended to increase the probability of clinical signs at day 13 post-infection (poor resilience). A higher skewness post-challenge (tendency) and a larger change in skewness from pre- to post-challenge increased the probability of mortality. A decrease in skewness post-challenge lowered the risk of mortality. The post-challenge DIOR autocorrelation was neither linked to morbidity nor to mortality. In conclusion, results from this study showed that post-challenge DIORs of activity can be used to quantify resilience to PRRSV challenge.</p

    Data_Sheet_1_Wastewater-based surveillance identifies start to the pediatric respiratory syncytial virus season in two cities in Ontario, Canada.docx

    No full text
    IntroductionDetection of community respiratory syncytial virus (RSV) infections informs the timing of immunoprophylaxis programs and hospital preparedness for surging pediatric volumes. In many jurisdictions, this relies upon RSV clinical test positivity and hospitalization (RSVH) trends, which are lagging indicators. Wastewater-based surveillance (WBS) may be a novel strategy to accurately identify the start of the RSV season and guide immunoprophylaxis administration and hospital preparedness.MethodsWe compared citywide wastewater samples and pediatric RSVH in Ottawa and Hamilton between August 1, 2022, and March 5, 2023. 24-h composite wastewater samples were collected daily and 5 days a week at the wastewater treatment facilities in Ottawa and Hamilton, Ontario, Canada, respectively. RSV WBS samples were analyzed in real-time for RSV by RT-qPCR.ResultsRSV WBS measurements in both Ottawa and Hamilton showed a lead time of 12 days when comparing the WBS data set to pediatric RSVH data set (Spearman’s ρ = 0.90). WBS identify early RSV community transmission and declared the start of the RSV season 36 and 12 days in advance of the provincial RSV season start (October 31) for the city of Ottawa and Hamilton, respectively. The differing RSV start dates in the two cities is likely associated with geographical and regional variation in the incidence of RSV between the cities.DiscussionQuantifying RSV in municipal wastewater forecasted a 12-day lead time of the pediatric RSVH surge and an earlier season start date compared to the provincial start date. These findings suggest an important role for RSV WBS to inform regional health system preparedness, reduce RSV burden, and understand variations in community-related illness as novel RSV vaccines and monoclonal antibodies become available.</p

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text
    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (. https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text
    corecore