10 research outputs found

    Semantic Communication with Conceptual Spaces

    Full text link
    Despite the fact that Shannon and Weaver's Mathematical Theory of Communication was published over 70 years ago, all communication systems continue to operate at the first of three levels defined in this theory: the technical level. In this letter, we argue that a transition to the semantic level embodies a natural, important step in the evolution of communication technologies. Furthermore, we propose a novel approach to engineering semantic communication using conceptual spaces and functional compression. We introduce a model of semantic communication utilizing this approach, and present quantitative simulation results demonstrating performance gains on the order of 3dB.Comment: 4 pages, 3 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    The Market for Vanilla in Germany and the United States

    Get PDF
    This market research paper has been prepared under the supervision of Prof. Dr. Wolfgang Veit of Cologne University of Applied Sciences and Prof. Dr. Carol Scovotti of University of Wisconsin-Whitewater in the course of the inter-university cross-border collaboration student research project “Export Opportunity Surveys (EOS)”. This study explores vanilla export opportunities to the German and US markets

    Targeting a Subpocket in Trypanosoma brucei Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity

    Get PDF
    Several trypanosomatid cyclic nucleotide phosphodiesterases (PDEs) possess a unique, parasite-specific cavity near the ligand-binding region that is referred to as the P-pocket. One of these enzymes, Trypanosoma brucei PDE B1 (TbrPDEB1), is considered a drug target for the treatment of African sleeping sickness. Here, we elucidate the molecular determinants of inhibitor binding and reveal that the P-pocket is amenable to directed design. By iterative cycles of design, synthesis, and pharmacological evaluation and by elucidating the structures of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective TbrPDEB1 inhibitor series. Two of these, 8 (NPD-008) and 9 (NPD-039), were potent (Ki = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects (IC50 = 5.5 and 6.7 ?M, respectively). Treatment of parasites with 8 caused an increase in intracellular cyclic adenosine monophosphate (cAMP) levels and severe disruption of T. brucei cellular organization, chemically validating trypanosomal PDEs as therapeutic targets in trypanosomiasis

    A Semi-automatic Data Extraction System for Heterogeneous Data Sources: a Case Study from Cotton Industry

    No full text
    With the recent developments in digitisation, there are increasing number of documents available online. There are several information extraction tools that are available to extract information from digitised documents. However, identifying precise answers to a given query is often a challenging task especially if the data source where the relevant information resides is unknown. This situation becomes more complex when the data source is available in multiple formats such as PDF, table and html. In this paper, we propose a novel data extraction system to discover relevant and focused information from diverse unstructured data sources based on text mining approaches. We perform a qualitative analysis to evaluate the proposed system and its suitability and adaptability using cotton industry

    Targeting a Subpocket in <i>Trypanosoma brucei</i> Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity

    No full text
    Several trypanosomatid cyclic nucleotide phosphodiesterases (PDEs) possess a unique, parasite-specific cavity near the ligand-binding region that is referred to as the P-pocket. One of these enzymes, <i>Trypanosoma brucei</i> PDE B1 (TbrPDEB1), is considered a drug target for the treatment of African sleeping sickness. Here, we elucidate the molecular determinants of inhibitor binding and reveal that the P-pocket is amenable to directed design. By iterative cycles of design, synthesis, and pharmacological evaluation and by elucidating the structures of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective TbrPDEB1 inhibitor series. Two of these, <b>8</b> (NPD-008) and <b>9</b> (NPD-039), were potent (<i>K</i><sub>i</sub> = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects (IC<sub>50</sub> = 5.5 and 6.7 ÎĽM, respectively). Treatment of parasites with <b>8</b> caused an increase in intracellular cyclic adenosine monophosphate (cAMP) levels and severe disruption of <i>T. brucei</i> cellular organization, chemically validating trypanosomal PDEs as therapeutic targets in trypanosomiasis

    Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials

    No full text
    corecore