6,782 research outputs found

    Dynamic Stabilization of Cubic AuZn

    Get PDF
    A recently developed temperature-dependent effective potential method is employed to study the martensitic phase transformation in AuZn. This method is based on ab initio molecular dynamics and allows to obtain finite-temperature lattice vibrational properties. We show that the transversal acoustic TA_2[110] mode associated with the phase transition is stabilized at 300 K. Temperature evolution of single-phonon dynamic structure factor at the wave vector q=1/3[1,1,0], associated with phonon softening and Fermi surface nesting, was also studied

    Correlation effects and orbital magnetism of Co clusters

    Get PDF
    Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the importance of dynamic correlations effects for determining fundamental magnetic properties of magnets in the nano-size regime

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    The Chevreton Tensor and Einstein-Maxwell Spacetimes Conformal to Einstein Spaces

    Get PDF
    In this paper we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure-radiation type and that it restricts the spacetimes to Petrov types \textbf{N} or \textbf{O}. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on closed form, we settle with giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a CC-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally CC-spaces, but none of them are conformal to Einstein spaces.Comment: 22 pages. Corrected equation (12

    About the strength of correlation effects in the electronic structure of iron

    Full text link
    The strength of electronic correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) has been investigated by means of spin and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. This comparison indicates that the present state of the art many-body calculations, although improving the description of correlation effects in Fe, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including non-local fluctuations.Comment: 4 pages, 4 figure
    • …
    corecore