18,181 research outputs found
Waveforms for the Massive MIMO Downlink: Amplifier Efficiency, Distortion and Performance
In massive MIMO, most precoders result in downlink signals that suffer from
high PAR, independently of modulation order and whether single-carrier or OFDM
transmission is used. The high PAR lowers the power efficiency of the base
station amplifiers. To increase power efficiency, low-PAR precoders have been
proposed. In this article, we compare different transmission schemes for
massive MIMO in terms of the power consumed by the amplifiers. It is found that
(i) OFDM and single-carrier transmission have the same performance over a
hardened massive MIMO channel and (ii) when the higher amplifier power
efficiency of low-PAR precoding is taken into account, conventional and low-PAR
precoders lead to approximately the same power consumption. Since downlink
signals with low PAR allow for simpler and cheaper hardware, than signals with
high PAR, therefore, the results suggest that low-PAR precoding with either
single-carrier or OFDM transmission should be used in a massive MIMO base
station
Vertebrate DNA in Fecal Samples from Bonobos and Gorillas: Evidence for Meat Consumption or Artefact?
Background: Deciphering the behavioral repertoire of great apes is a challenge for several reasons. First, due to their elusive behavior in dense forest environments, great ape populations are often difficult to observe. Second, members of the genus Pan are known to display a great variety in their behavioral repertoire; thus, observations from one population are not necessarily representative for other populations. For example, bonobos (Pan paniscus) are generally believed to consume almost no vertebrate prey. However, recent observations show that at least some bonobo populations may consume vertebrate prey more commonly than previously believed. We investigated the extent of their meat consumption using PCR amplification of vertebrate mitochondrial DNA (mtDNA) segments from DNA extracted from bonobo feces. As a control we also attempted PCR amplifications from gorilla feces, a species assumed to be strictly herbivorous. Principal Findings: We found evidence for consumption of a variety of mammalian species in about 16% of the samples investigated. Moreover, 40% of the positive DNA amplifications originated from arboreal monkeys. However, we also found duiker and monkey mtDNA in the gorilla feces, albeit in somewhat lower percentages. Notably, the DNA sequences isolated from the two ape species fit best to the species living in the respective regions. This result suggests that the sequences are of regional origin and do not represent laboratory contaminants. Conclusions: Our results allow at least three possible and mutually not exclusive conclusions. First, all results may represent contamination of the feces by vertebrate DNA from the local environment. Thus, studies investigating a species' diet from feces DNA may be unreliable due to the low copy number of DNA originating from diet items. Second, there is some inherent difference between the bonobo and gorilla feces, with only the later ones being contaminated. Third, similar to bonobos, for which the consumption of monkeys has only recently been documented, the gorilla population investigated (for which very little observational data are as yet available) may occasionally consume small vertebrates. Although the last explanation is speculative, it should not be discarded a-priori given that observational studies continue to unravel new behaviors in great ape species
Out-of-Band Radiation Measure for MIMO Arrays with Beamformed Transmission
The spatial characteristics of the out-of-band radiation that a multiuser
MIMO system emits in the environment, due to its power amplifiers (modeled by a
polynomial model) are nonlinear, is studied by deriving an analytical
expression for the continuous-time cross-correlation of the transmit signals.
At a random spatial point, the same power is received at any frequency on
average with a MIMO base station as with a SISO base station when the two
radiate the same amount of power. For a specific channel realization however,
the received power depends on the channel. We show that the power received
out-of-band only deviates little from the average in a MIMO system with
multiple users and that the deviation can be significant with only one user.
Using an ergodicity argument, we conclude that out-of-band radiation is less of
a problem in massive MIMO, where total radiated power is lower compared to SISO
systems and that requirements on spectral regrowth can be relaxed in MIMO
systems without causing more total out-of-band radiation
Impact of Spatial Filtering on Distortion from Low-Noise Amplifiers in Massive MIMO Base Stations
In massive MIMO base stations, power consumption and cost of the low-noise
amplifiers (LNAs) can be substantial because of the many antennas. We
investigate the feasibility of inexpensive, power efficient LNAs, which
inherently are less linear. A polynomial model is used to characterize the
nonlinear LNAs and to derive the second-order statistics and spatial
correlation of the distortion. We show that, with spatial matched filtering
(maximum-ratio combining) at the receiver, some distortion terms combine
coherently, and that the SINR of the symbol estimates therefore is limited by
the linearity of the LNAs. Furthermore, it is studied how the power from a
blocker in the adjacent frequency band leaks into the main band and creates
distortion. The distortion term that scales cubically with the power received
from the blocker has a spatial correlation that can be filtered out by spatial
processing and only the coherent term that scales quadratically with the power
remains. When the blocker is in free-space line-of-sight and the LNAs are
identical, this quadratic term has the same spatial direction as the desired
signal, and hence cannot be removed by linear receiver processing
Spatial Characteristics of Distortion Radiated from Antenna Arrays with Transceiver Nonlinearities
The distortion from massive MIMO (multiple-input--multiple-output) base
stations with nonlinear amplifiers is studied and its radiation pattern is
derived. The distortion is analyzed both in-band and out-of-band. By using an
orthogonal Hermite representation of the amplified signal, the spatial
cross-correlation matrix of the nonlinear distortion is obtained. It shows
that, if the input signal to the amplifiers has a dominant beam, the distortion
is beamformed in the same way as that beam. When there are multiple beams
without any one being dominant, it is shown that the distortion is practically
isotropic. The derived theory is useful to predict how the nonlinear distortion
will behave, to analyze the out-of-band radiation, to do reciprocity
calibration, and to schedule users in the frequency plane to minimize the
effect of in-band distortion
Universal distribution of magnetic anisotropy of impurities in ordered and disordered nano-grains
We examine the distribution of the magnetic anisotropy (MA) experienced by a
magnetic impurity embedded in a metallic nano-grain. As an example of a generic
magnetic impurity with partially filled -shell, we study the case of
impurities imbedded into ordered and disordered Au nano-grains, described in
terms of a realistic band structure. Confinement of the electrons induces a
magnetic anisotropy that is large, and can be characterized by 5 real
parameters, coupling to the quadrupolar moments of the spin. In ordered
(spherical) nano-grains, these parameters exhibit symmetrical structures and
reflect the symmetry of the underlying lattice, while for disordered grains
they are randomly distributed and, - for stronger disorder, - their
distribution is found to be characterized by random matrix theory. As a result,
the probability of having small magnetic anisotropies is suppressed below
a characteristic scale , which we predict to scale with the number of
atoms as . This gives rise to anomalies in the
specific heat and the susceptibility at temperatures and
produces distinct structures in the magnetic excitation spectrum of the
clusters, that should be possible to detect experimentally
Finite-size effects in the dynamics of few bosons in a ring potential
We study the temporal evolution of a small number of ultra-cold bosonic
atoms confined in a ring potential. Assuming that initially the system is in a
solitary-wave solution of the corresponding mean-field problem, we identify
significant differences in the time evolution of the density distribution of
the atoms when it instead is evaluated with the many-body Schr\"odinger
equation. Three characteristic timescales are derived: the first is the period
of rotation of the wave around the ring, the second is associated with a
"decay" of the density variation, and the third is associated with periodic
"collapses" and "revivals" of the density variations, with a factor of separating each of them. The last two timescales tend to infinity in the
appropriate limit of large , in agreement with the mean-field approximation.
These findings are based on the assumption of the initial state being a
mean-field state. We confirm this behavior by comparison to the exact solutions
for a few-body system stirred by an external potential. We find that the exact
solutions of the driven system exhibit similar dynamical features.Comment: To appear in Journal of Physics
Galerkin and RungeâKutta methods: unified formulation, a posteriori error estimates and nodal superconvergence
Abstract. We unify the formulation and analysis of Galerkin and RungeâKutta methods for the time discretization of parabolic equations. This, together with the concept of reconstruction of the approximate solutions, allows us to establish a posteriori superconvergence estimates for the error at the nodes for all methods. 1
- âŠ