2,731 research outputs found

    Human Welfare & Emergencies: Education, Natality, and Violence

    Get PDF
    I identify changes in human action during emergencies such as heavy precipitation and shelter-in-place orders. In two chapters I explore the effects of precipitation on educational attainment and birth rates as residential broadband access increases. In my third chapter I identify the movement of pets in and out of the home as a trigger for domestic violence during the COVID-19 lockdown. I estimate difference-in-difference regressions with panel data, coming to three conclusions. First: educational attainment in Appalachia is stunted by precipitation, as students have difficulty getting to school in bad weather. As this historically under-educated region of the US gains internet access, the negative effects of rain and snow disappear. Second: there is little evidence that precipitation increases natality. What little evidence of this ``blizzard baby\u27\u27 phenomenon I do find is negated by mobile internet access, which decreases births nine months after high precipitation. Third: during COVID-19 shelter-in-place orders, domestic violence decreases after pets are surrendered to local shelters and increases when pets are confiscated

    Perspectives on Care Coordination for Youth with TBI: Moving Forward to Provide Better Care

    Get PDF
    BACKGROUND: Care coordination aligns services and optimizes outcomes for children with traumatic brain injury (TBI), yet numerous obstacles can impede effective care coordination following a TBI. OBJECTIVE: The goal of this work is to identify barriers and facilitators to care coordination from the perspective of individuals who care for young people impacted by TBI. METHODS: Twenty-one care providers participated in semi-structured interviews to gather their perspectives on systems of care coordination for youth with TBI and potential areas for improvement. Using reflexive thematic analysis, researchers identified key themes across interviews. RESULTS: Three themes were identified: 1) gaps in knowledge; 2) poor collaboration and communication between systems and care providers; and 3) inadequate legislative and policy frameworks that fund and support pediatric TBI. Across themes, participants shared their experiences and ideas to improve each of these areas. CONCLUSIONS: A structured, consistent, and coordinated system of care for pediatric TBI is critical to ensure optimal outcomes. Protocols that emphasize intentional and productive collaboration between healthcare settings and schools and education for all care providers are cornerstones in improving outcomes for children. Top-down action that develops policy and funding initiatives is needed to ensure equitable, consistent access to appropriate healthcare and educational supports

    Role of environment and sex differences in the development of autoimmune diseases: A roundtable meeting project

    Get PDF
    Autoimmune diseases (ADs) impose substantial health and financial burdens in the United States and in many parts of the world. Women are disproportionately affected by many of these disorders, which often contribute to lifelong disabilities. While the number of patients with some ADs appears to be rising, the complexities of conducting epidemiological studies prevent a thorough understanding of the prevalence and incidence of these various conditions. Research on environmental influences of these illnesses is limited, although they are generally hypothesized to result from the interaction of environmental agents in genetically susceptible individuals. Further, there is little known regarding the role of sex and gender in the environmentally influenced mechanisms leading to the development of AD. To address these issues, particularly the roles of environment and sex and gender in ADs and the factors that contribute to the rise in ADs, the Society for Women\u27s Health Research convened an interdisciplinary roundtable of experts from academia, medicine, and government agencies to share their expertise, address knowledge gaps in research, and propose future research recommendations

    Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats

    Get PDF
    Trainability is important in elite sport and in recreational physical activity, and the wide range for response to training is largely dependent on genotype. In this study, we compare a newly developed rat model system selectively bred for low and high gain in running distance from aerobic training to test whether genetic segregation for trainability associates with differences in factors associated with mitochondrial biogenesis. Low response trainer (LRT) and high response trainer (HRT) rats from generation 11 of artificial selection were trained five times a week, 30 min per day for 3 months at 70 % VO2max to study the mitochondrial molecular background of trainability. As expected, we found significant differential for the gain in running distance between LRT and HRT groups as a result of training. However, the changes in VO2max, COX-4, redox homeostasis associated markers (reactive oxygen species (ROS)), silent mating-type information regulation 2 homolog (SIRT1), NAD+/NADH ratio, proteasome (R2 subunit), and mitochondrial network related proteins such as mitochondrial fission protein 1 (Fis1) and mitochondrial fusion protein (Mfn1) suggest that these markers are not strongly involved in the differences in trainability between LRT and HRT. On the other hand, according to our results, we discovered that differences in basal activity of AMP-activated protein kinase alpha (AMPKα) and differential changes in aerobic exercise-induced responses of citrate synthase, carbonylated protein, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1-α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), and Lon protease limit trainability between these selected lines. From this, we conclude that mitochondrial biogenesis-associated factors adapt differently to aerobic exercise training in training sensitive and training resistant rats

    Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels

    Get PDF
    The importance of metabolism in macrophage function has been reported, but the in vivo relevance of the in vitro observations is still unclear. Here we show that macrophage metabolites are defined in a specific tissue context, and these metabolites are crucially linked to tissue-resident macrophage functions. We find the peritoneum to be rich in glutamate, a glutaminolysis-fuel that is exploited by peritoneal-resident macrophages to maintain respiratory burst during phagocytosis via enhancing mitochondrial complex-II metabolism. This niche-supported, inducible mitochondrial function is dependent on protein kinase C activity, and is required to fine-tune the cytokine responses that control inflammation. In addition, we find that peritoneal-resident macrophage mitochondria are recruited to phagosomes and produce mitochondrially derived reactive oxygen species, which are necessary for microbial killing. We propose that tissue-resident macrophages are metabolically poised in situ to protect and exploit their tissue-niche by utilising locally available fuels to implement specific metabolic programmes upon microbial sensing

    Metabolic Abnormalities of Chronic High-Dose Glucocorticoids Are Not Mediated by Hypothalamic AgRP in Male Mice.

    Get PDF
    Glucocorticoids are potent and widely used medicines but often cause metabolic side effects. A murine model of corticosterone treatment resulted in increased hypothalamic expression of the melanocortin antagonist AgRP in parallel with obesity and hyperglycemia. We investigated how these adverse effects develop over time, with particular emphasis on hypothalamic involvement. Wild-type and Agrp-/- male mice were treated with corticosterone for 3 weeks. Phenotypic, biochemical, protein, and mRNA analyses were undertaken on central and peripheral tissues, including white and brown adipose tissue, liver, and muscle, to determine the metabolic consequences. Corticosterone treatment induced hyperphagia within 1 day in wild-type mice, which persisted for 3 weeks. Despite this early increase in food intake, the body weight only started to increase after 10 days. Hyperinsulinemia occurred at day 1. Also, although after 2 days, alterations were present in the genes often associated with insulin resistance in several peripheral tissues, hyperglycemia only developed at 3 weeks. Throughout, sustained elevation in hypothalamic Agrp expression was present. Mice with Agrp deleted [using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, Agrp-/-] were partially protected against corticosterone-induced hyperphagia. However, Agrp-/- mice still had corticosterone-induced increases in body weight and adiposity similar to those of the Agrp+/+ mice. Loss of Agrp did not diminish corticosterone-induced hyperinsulinemia or correct changes in hepatic gluconeogenic genes. Chronic glucocorticoid treatment in mice mimics many of the metabolic side effects seen in patients and leads to a robust increase in Agrp. However, AgRP does not appear to be responsible for most of the glucocorticoid-induced adverse metabolic effects.MR

    SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle

    Get PDF
    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1-regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing.National Strength and Conditioning Association OTKA. Grant Number: 112810 Hungarian Academy of Science National Institute of Environmental Health Sciences. Grant Number: ES00359

    Predicting asthma-related crisis events using routine electronic healthcare data

    Get PDF
    Background There is no published algorithm predicting asthma crisis events (accident and emergency [A&E] attendance, hospitalisation, or death) using routinely available electronic health record (EHR) data. Aim To develop an algorithm to identify individuals at high risk of an asthma crisis event. Design and setting Database analysis from primary care EHRs of people with asthma across England and Scotland. Method Multivariable logistic regression was applied to a dataset of 61 861 people with asthma from England and Scotland using the Clinical Practice Research Datalink. External validation was performed using the Secure Anonymised Information Linkage Databank of 174 240 patients from Wales. Outcomes were ≥1 hospitalisation (development dataset) and asthma-related hospitalisation, A&E attendance, or death (validation dataset) within a 12-month period. Results Risk factors for asthma-related crisis events included previous hospitalisation, older age, underweight, smoking, and blood eosinophilia. The prediction algorithm had acceptable predictive ability with a receiver operating characteristic of 0.71 (95% confidence interval [CI] = 0.70 to 0.72) in the validation dataset. Using a cut-point based on the 7% of the population at greatest risk results in a positive predictive value of 5.7% (95% CI = 5.3% to 6.1%) and a negative predictive value of 98.9% (95% CI = 98.9% to 99.0%), with sensitivity of 28.5% (95% CI = 26.7% to 30.3%) and specificity of 93.3% (95% CI = 93.2% to 93.4%); those individuals had an event risk of 6.0% compared with 1.1% for the remaining population. In total, 18 people would need to be followed to identify one admission. Conclusion This externally validated algorithm has acceptable predictive ability for identifying patients at high risk of asthma-related crisis events and excluding those not at high risk

    Chronic glucocorticoid treatment induces hepatic lipid accumulation and hyperinsulinaemia in part through actions on AgRP neurons

    Get PDF
    Funder: Mawer-Fitzgerald Endowment FundAbstract: Glucocorticoids (GCs) are widely prescribed anti-inflammatory medicines, but their use can lead to metabolic side-effects. These may occur through direct actions of GCs on peripheral organs, but could also be mediated by the hypothalamic AgRP neurons, which can increase food intake and modify peripheral metabolism. Therefore, the aim of this study was to examine the metabolic effects of chronic treatment with the GC corticosterone (Cort, 75 μg/ml in drinking water) in mice lacking the glucocorticoid receptor (GR) on AgRP neurons. Female AgRP-GR KO mice had delayed onset of Cort-induced hyperphagia. However, AgRP-GR KO had little impact on the increased body weight or adiposity seen with 3 weeks Cort treatment. Cort caused hepatic steatosis in control mice, but in Cort treated female AgRP-GR KO mice there was a 25% reduction in liver lipid content and lower plasma triglycerides. Additionally, Cort treatment led to hyperinsulinaemia, but compared to controls, Cort-treated AgRP-GR KO mice had both lower fasting insulin levels and lower insulin levels during a glucose tolerance test. In conclusion, these data indicate that GCs do act through AgRP neurons to contribute, at least in part, to the adverse metabolic consequences of chronic GC treatment

    Chronic glucocorticoid treatment induces hepatic lipid accumulation and hyperinsulinaemia in part through actions on AgRP neurons

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-11, accepted 2021-06-04, registration 2021-06-24, pub-electronic 2021-07-02, online 2021-07-02, collection 2021-12Publication status: PublishedFunder: Mawer-Fitzgerald Endowment FundFunder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265; Grant(s): MRC_MC_UU_12012.1Abstract: Glucocorticoids (GCs) are widely prescribed anti-inflammatory medicines, but their use can lead to metabolic side-effects. These may occur through direct actions of GCs on peripheral organs, but could also be mediated by the hypothalamic AgRP neurons, which can increase food intake and modify peripheral metabolism. Therefore, the aim of this study was to examine the metabolic effects of chronic treatment with the GC corticosterone (Cort, 75 μg/ml in drinking water) in mice lacking the glucocorticoid receptor (GR) on AgRP neurons. Female AgRP-GR KO mice had delayed onset of Cort-induced hyperphagia. However, AgRP-GR KO had little impact on the increased body weight or adiposity seen with 3 weeks Cort treatment. Cort caused hepatic steatosis in control mice, but in Cort treated female AgRP-GR KO mice there was a 25% reduction in liver lipid content and lower plasma triglycerides. Additionally, Cort treatment led to hyperinsulinaemia, but compared to controls, Cort-treated AgRP-GR KO mice had both lower fasting insulin levels and lower insulin levels during a glucose tolerance test. In conclusion, these data indicate that GCs do act through AgRP neurons to contribute, at least in part, to the adverse metabolic consequences of chronic GC treatment
    corecore