47 research outputs found

    Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A nationwide survey on the microbial etiology of cases of subclinical mastitis in dairy cows was carried out on dairy farms in Sweden. The aim was to investigate the microbial panorama and the occurrence of antimicrobial resistance. Moreover, differences between newly infected cows and chronically infected cows were investigated.</p> <p>Methods</p> <p>In total, 583 quarter milk samples were collected from 583 dairy cows at 226 dairy farms from February 2008 to February 2009. The quarter milk samples were bacteriological investigated and scored using the California Mastitis Test. Staphylococci were tested for betalactamase production and presence of resistance was evaluated in all specific udder pathogens. Differences between newly infected cows and chronically infected cows were statistically investigated using logistic regression analysis.</p> <p>Results</p> <p>The most common isolates of 590 bacteriological diagnoses were <it>Staphylococcus (S) aureus </it>(19%) and coagulase-negative staphylococci (CNS; 16%) followed by <it>Streptococcus (Str) dysgalactiae </it>(9%), <it>Str. uberis </it>(8%), <it>Escherichia (E.) coli </it>(2.9%), and <it>Streptococcus </it>spp. (1.9%). Samples with no growth or contamination constituted 22% and 18% of the diagnoses, respectively. The distribution of the most commonly isolated bacteria considering only bacteriological positive samples were: <it>S. aureus </it>- 31%, CNS - 27%, <it>Str. dysgalactiae </it>- 15%, <it>Str. uberis </it>- 14%, <it>E. coli </it>- 4.8%, and <it>Streptococcus </it>spp. - 3.1%. There was an increased risk of finding <it>S. aureus, Str. uberis </it>or <it>Str. dysgalactiae </it>in milk samples from chronically infected cows compared to findings in milk samples from newly infected cows. Four percent of the <it>S. aureus </it>isolates and 35% of the CNS isolates were resistant to penicillin G. Overall, resistance to other antimicrobials than penicillin G was uncommon.</p> <p>Conclusions</p> <p><it>Staphylococcus aureus </it>and CNS were the most frequently isolated pathogens and resistance to antimicrobials was rare.</p

    Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages

    Get PDF
    Streptococcus uberis is frequently isolated from the mammary gland of dairy cattle. Infection with some strains can induce mild subclinical inflammation whilst others induce severe inflammation and clinical mastitis. We compared here the inflammatory response of primary cultures of bovine mammary epithelial cells (pbMEC) towards S. uberis strains collected from clinical or subclinical cases (seven strains each) of mastitis with the strong response elicited by Escherichia coli. Neither heat inactivated nor live S. uberis induced the expression of 10 key immune genes (including TNF, IL1B, IL6). The widely used virulent strain 0140J and the avirulent strain, EF20 elicited similar responses; as did mutants defective in capsule (hasA) or biofilm formation (sub0538 and sub0539). Streptococcus uberis failed to activate NF-κB in pbMEC or TLR2 in HEK293 cells, indicating that S. uberis particles did not induce any TLR-signaling in MEC. However, preparations of lipoteichoic acid (LTA) from two strains strongly induced immune gene expression and activated NF-κB in pbMEC, without the involvement of TLR2. The immune-stimulatory LTA must be arranged in the intact S. uberis such that it is unrecognizable by the relevant pathogen receptors of the MEC. The absence of immune recognition is specific for MEC, since the same S. uberis preparations strongly induced immune gene expression and NF-κB activity in the murine macrophage model cell RAW264.7. Hence, the sluggish immune response of MEC and not of professional immune cells to this pathogen may aid establishment of the often encountered belated and subclinical phenotype of S. uberis mastitis

    Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli

    Get PDF
    The aim of this study was to determine risk factors for bovine intramammary infection (IMI) associated with the most common bacterial species in Finland. Large databases of the Finnish milk-recording system and results of microbiological analyses of mastitic milk samples from Valio Ltd. (Helsinki, Finland) were analyzed. The study group comprised 29,969 cows with IMI from 4,173 dairy herds. A cow with a quarter milk sample in which DNA of target species was detected in the PathoProof Mastitis PCR Assay (Thermo Fisher Scientific, Waltham, MA) was determined to have IMI. Only cows with IMI caused by the 6 most common pathogens or groups of pathogens, coagulase-negative staphylococci (CNS), Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, and Escherichia coli, were included. The control group comprised 160,176 IMI-free cows from the same herds as the study group. A multilevel logistic regression model was used to study herd- and cow-specific risk factors for incidence of IMI. Pathogen-specific results confirmed those of earlier studies, specifically that increasing parity increases prevalence of IMI regardless of causative pathogen. Holsteins were more susceptible to IMI than Nordic Reds except when the causative pathogen was CNS. Occurrence of IMI caused by C. bovis was not related to milk yield, in contrast to IMI caused by all other pathogens investigated. Organic milk production was associated with IMI only when the causative pathogen of IMI was Staph. aureus; Staph. aureus IMI was more likely to occur in conventional than in organic production. Cows in older freestall barns with parlor milking had an increased probability of contracting an IMI compared with cows in tiestall barns or in new freestall barns with automatic milking. This was the case for all IMI, except those caused by CNS, the prevalence of which was not associated with the milking system, and IMI caused by Staph. aureus, which was most common in cows housed in tiestall barns. A better breeding index for milk somatic cell count was associated with decreased occurrence of IMI, indicating that breeding for improved udder health has been successful in reducing the incidence of IMI caused by the most common pathogens in Finland. In the Finnish dairy sector, the importance of other measures to control IMI will increase as the Holstein breed progressively takes the place of the Nordic Red breed. Attention should be paid to hygiene and cleanliness, especially in old freestall barns. Based on our results, the increasing prevalence of automatic milking is not a reason for special concern.Peer reviewe

    Methicillin-resistant Staphylococcus aureus not detected in Swedish nucleus and multiplying pig herds

    No full text
    Introduction: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has emerged among pigs in many countries. MRSA in the pig population constitute a reservoir with risk for transmission to humans in close contact with pigs. Absence of MRSA in the top of the breeding pyramid would prevent spread to the rest of the pig population. The aim of this study was to investigate the occurrence of MRSA in nucleus and multiplying pig herds in Sweden. Materials and methods: All nucleus and multiplying pig herds in Sweden present in 2011 (n = 53) and 2014 (n = 39) were sampled for MRSA. Results and discussion: MRSA was not detected either in 2011 or in 2014. That MRSA was not detected in the top of the breeding pyramid indicates a favourable MRSA situation in the Swedish pig population. A bbreviations: MRSA: methicillin-resistant Staphylococcus aureus; LA-MRSA: livestock-associated MRSA; CC: clonal comple

    Division of Listeria monocytogenes Serovar 1/2a Strains into Two Groups by PCR and Restriction Enzyme Analysis

    No full text
    Altogether, 100 strains of Listeria monocytogenes serovar 1/2a isolated from humans, animals, food, and the environment were typed by a combination of PCR and restriction enzyme analysis (REA). A PCR product of 2,916 bp, containing the downstream end of the gene inlA (955 bp), the space between inlA and inlB (85 bp), and 1,876 bp of the gene inlB, was cleaved with the enzyme AluI, and the fragments generated were separated by gel electrophoresis. By this method two different cleavage patterns were obtained. Seventy of the 100 strains shared one restriction profile, and the remaining 30 strains shared the second one. No relation was found between the types differentiated by PCR-REA and the origins of the strains
    corecore