2,915 research outputs found

    Gas Content, Size, Temperature and Velocity Effects on Cavitation Inception Internal Report No. 31

    Get PDF
    Gas content, size temperature, and velocity effects on Venturi cavity inceptio

    Pion Scalar Density and Chiral Symmetry Restoration at Finite Temperature and Density

    Get PDF
    This paper is devoted to the evaluation of the pionic scalar density at finite temperature and baryonic density. We express the latter effect in terms of the nuclear response evaluated in the random phase approxima- tion. We discuss the density and temperature evolution of the pionic density which governs the quark condensate evolution. Numerical evalua- tions are performed.Comment: 13 pages, Latex File, 10 eps Figure

    Evaluation of the ππ\pi\pi scattering amplitude in the σ\sigma-channel at finite density

    Full text link
    The ππ\pi\pi scattering amplitude in the σ\sigma-channel is studied at finite baryonic density in the framework of a chiral unitary approach which successfully reproduces the meson meson phase shifts and generates the f0f_0 and σ\sigma resonances in vacuum. We address here a new variety of mechanisms recently suggested to modify the ππ\pi\pi interaction in the medium, as well as the role of the s−s-wave selfenergy, in addition to the p−p-wave, in the dressing of the pion propagators.Comment: 26 pages, 17 figure

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Quark Condensate in the Deuteron

    Get PDF
    We study the changes produced by the deuteron on the QCD quark condensate by means the Feynman-Hellmann theorem and find that the pion mass dependence of the pion-nucleon coupling could play an important role. We also discuss the relation between the many body effect of the condensate and the meson exchange currents, as seen by photons and pions. For pion probes, the many-body term in the physical amplitude differs significantly from that of soft pions, the one linked to the condensate. Thus no information about the many-body term of the condensate can be extracted from the pion-deuteron scattering length. On the other hand, in the Compton amplitude, the relationship with the condensate is a more direct one.Comment: to appear in Physics Review C (19 pages, 3 figures

    Meson-induced correlations of nucleons in nuclear Compton scattering

    Get PDF
    The non-resonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is dicussed. We found that different form factors appear for the static part (proportional to the enhancement constant Îș\kappa ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities.Comment: 15 pages, Latex, epsf.sty, 9 eps figures

    Density of states of helium droplets

    Full text link
    Accurate analytical expressions for the state densities of liquid He-4 droplets are derived, incorporating the ripplon and phonon degrees of freedom. The microcanonical temperature and the ripplon angular momentum level density are also evaluated. The approach is based on inversions and systematic expansions of canonical thermodynamic properties.Comment: 20 pages, 5 figure

    Chiral symmetry and the axial nucleon to Delta(1232) transition form factors

    Full text link
    We study the momentum and the quark mass dependence of the axial nucleon to Delta(1232) transition form factors in the framework of non-relativistic chiral effective field theory to leading-one-loop order. The outcome of our analysis provides a theoretical guidance for chiral extrapolations of lattice QCD results with dynamical fermions.Comment: 18 pages, 3 figure

    A Light Front Treatment of the Nucleus-Implications for Deep Inelastic Scattering

    Full text link
    A light front treatment of the nuclear wave function is developed and applied, using the mean field approximation, to infinite nuclear matter. The nuclear mesons are shown to carry about a third of the nuclear plus momentum, p+; but their momentum distribution has support only at p+ =0, and the mesons do not contribute to nuclear deep inelastic scattering. This zero mode effect occurs because the meson fields are independent of space-time position.Comment: 11 pages, revtex, 1 figur

    The nucleus as a fluid of skyrmions: Energy levels and nucleon properties in the medium

    Get PDF
    A model of a fluid of skyrmions coupled to a scalar and to the \o meson mean fields is developed. The central and spin-orbit potentials of a skyrmion generated by the fields predict correct energy levels in selected closed shell nuclei. The effect of the meson fields on the properties of skyrmions in nuclei is investigated.Comment: Latex format, 6 figures, Journal of Physics G, to be publishe
    • 

    corecore