36 research outputs found

    Months-Long Spike in Aqueous Arsenic Following Domestic Well Installation and Disinfection: Short- and Long-Term Drinking Water Quality Implications

    Get PDF
    Exposure to high concentration geogenic arsenic via groundwater is a worldwide health concern. Well installation introduces oxic drilling fluids and hypochlorite (a strong oxidant) for disinfection, thus inducing geochemical disequilibrium. Well installation causes changes in geochemistry lasting 12 + months, as illustrated in a recent study of 250 new domestic wells in Minnesota, north-central United States. One study well had extremely high initial arsenic (1550 ”g/L) that substantially decreased after 15 months (5.2 ”g/L). The drilling and development of the study well were typical and ordinary; nothing observable indicated the very high initial arsenic concentration. We hypothesized that oxidation of arsenic-containing sulfides (which lowers pH) combined with low pH dissolution of arsenic-bearing Fe (oxyhydr)oxides caused the very high arsenic concentration. Geochemical equilibrium considerations and modeling supported our hypothesis. Groundwater equilibrium redox conditions are poised at the Fe(III)(s)/Fe(II)(aq) stability boundary, indicating arsenic-bearing Fe (oxyhydr)oxide mineral sensitivity to pH and redox changes. Changing groundwater geochemistry can have negative implications for home water treatment (e.g., reduced arsenic removal efficiency, iron fouling), which can lead to ongoing but unrecognized hazard of arsenic exposure from domestic well water. Our results may inform arsenic mobilization processes and geochemical sensitivity in similarly complex aquifers in Southeast Asia and elsewhere

    Yield and Forage Value of a Dual-Purpose \u3ci\u3ebmr-12\u3c/i\u3e Sorghum Hybrid

    Get PDF
    Grain sorghum [Sorghum bicolor (L.) Moench] is an important crop for rainfed production systems with 2.7 million ha grown in the United States in 2013. The brown-midrib (bmr) mutations, especially bmr-12, have resulted in low stover lignin and high fiber digestibility without reducing grain yield in some sorghum lines. However, the effect of the bmr trait on beef cattle (Bos taurus) performance when grazing crop residue is unknown. Our objectives were to validate previous small-plot results reporting no grain yield difference between near-isogenic bmr-12 (BMR) and wild-type control (CON) A Wheatland × R Tx430 sorghum hybrids in a field-scale experiment and to determine if BMR stover enhances beef production in a grazing experiment. Four replicated paddocks (2.3 ha) were planted in 2006 and 2008 near Mead, NE. Crossbred yearling steers (240 ± 17 kg hd-1) grazed (2.6 steers ha-1) paddocks following grain harvest for 72 d in 2006 and 61 d in 2008. Forage was sampled 4, 30, and 60 d after grazing began. Grain yield of BMR was 6% less (P = 0.01) than CON with no difference in stover neutral detergent fiber (NDF) content, but BMR stover had higher in vitro NDF digestibility (IVNDFD) (31%; P \u3c 0.0001), steer average daily gain (ADG; 0.18 kg hd-1 d-1; P = 0.001), and body weight (BW) gain (29 kg ha-1; P = 0.002), resulting in an estimated increase in net return of $133.84 ha-1 due to BMR. Results suggest that the A Wheatland × R Tx430 bmr-12 hybrid is an effective dual-purpose sorghum crop for both grain and beef production

    Solid-phase arsenic speciation in aquifer sediments: A micro-X-ray absorption spectroscopy approach for quantifying trace-level speciation

    Full text link
    Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (ÎŒXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s ÎŒXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Small-scale fisheries come into focus

    No full text
    Findings from the forthcoming Illuminating Hidden Harvests (IHH) report show that small-scale fisheries produce 37 million tonnes of global catch and employ 90% of those working along the value chain in capture fisheries globally. These findings and others will add to the growing body of evidence around small-scale fisheries and support fisherfolk in achieving a ‘seat at the table’ in national, regional and global policy processes. *This article was first published by the INFOFISH International, Issue 2/2022 (March/April

    Months-long spike in aqueous arsenic following domestic well installation and disinfection: Short- and long-term drinking water quality implications

    Get PDF
    Exposure to high concentration geogenic arsenic via groundwater is a worldwide health concern. Well installation introduces oxic drilling fluids and hypochlorite (a strong oxidant) for disinfection, thus inducing geochemical disequilibrium. Well installation causes changes in geochemistry lasting 12 + months, as illustrated in a recent study of 250 new domestic wells in Minnesota, north-central United States. One study well had extremely high initial arsenic (1550 ”g/L) that substantially decreased after 15 months (5.2 ”g/L). The drilling and development of the study well were typical and ordinary; nothing observable indicated the very high initial arsenic concentration. We hypothesized that oxidation of arsenic-containing sulfides (which lowers pH) combined with low pH dissolution of arsenic-bearing Fe (oxyhydr)oxides caused the very high arsenic concentration. Geochemical equilibrium considerations and modeling supported our hypothesis. Groundwater equilibrium redox conditions are poised at the Fe(III)(s)/Fe(II)(aq) stability boundary, indicating arsenic-bearing Fe (oxyhydr)oxide mineral sensitivity to pH and redox changes. Changing groundwater geochemistry can have negative implications for home water treatment (e.g., reduced arsenic removal efficiency, iron fouling), which can lead to ongoing but unrecognized hazard of arsenic exposure from domestic well water. Our results may inform arsenic mobilization processes and geochemical sensitivity in similarly complex aquifers in Southeast Asia and elsewhere.This article is published as Erickson, Melinda L., Elizabeth D. Swanner, Brady A. Ziegler, and Jeffrey R. Havig. "Months-long spike in aqueous arsenic following domestic well installation and disinfection: short-and long-term drinking water quality implications." Journal of Hazardous Materials 414 (2021): 125409. doi:10.1016/j.jhazmat.2021.125409.</p

    Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress

    No full text
    Abstract Recruitment for many arid‐zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less‐dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well‐watered (ιsoil = −0.15 MPa) and water‐limited (ιsoil = −0.35 MPa) conditions. Success at three key recruitment stages—seed germination, emergence, and survival—and final seed viability of ungerminated seeds was assessed. For all species, less‐dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35–40°C) under water‐limited conditions caused 95%–100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30–40°C) and well‐watered conditions, loss of viability was greater from the less‐dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress‐driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid‐zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives
    corecore