13 research outputs found

    Zinc Supplementation Enhances the Pro-Death Function of UPR in Lymphoma Cells Exposed to Radiation

    No full text
    We have previously shown that Zinc supplementation triggered ER stress/UPR in cancer cells undergoing treatment by genotoxic agents, reactivated wtp53 in cancer cells harboring mutant p53 (mutp53) and potentiated the activity of wtp53 in those carrying wtp53. In this study, we used Zinc chloride alone or in combination with 2 Gy radiation to treat Primary Effusion Lymphoma (PEL) cells, an aggressive B-cell lymphoma associated with KSHV that harbors wt or partially functioning p53. We found that Zinc triggered a mild ER stress/UPR in these lymphoma cells and activated ERK1/2, molecule known to sustain cell survival in the course of UPR activation. In combination with radiations, Zinc triggered a stronger p53 activation that counteracted its mediated ERK1/2 phosphorylation, further upregulating the UPR molecule CHOP and promoting cell death. These data suggest that Zinc supplementation could be a promising strategy to reduce the doses of radiation and possibly of other DNA-damaging agents to obtain an efficient capacity to induce lymphoma cell death

    Interaction of CDCP1 with HER2 Enhances HER2-Driven Tumorigenesis and Promotes Trastuzumab Resistance in Breast Cancer

    Get PDF
    Understanding the molecular pathways that contribute to the aggressive behavior of HER2-positive breast cancers may aid in the development of novel therapeutic interventions. Here, we show that CDCP1 and HER2 are frequently co-overexpressed in metastatic breast tumors and associated with poor patient prognosis. HER2 and CDCP1 co-overexpression leads to increased transformation ability, cell migration, and tumor formation in vivo, and enhanced HER2 activation and downstream signaling in different breast cancer cell lines. Mechanistically, we demonstrate that CDCP1 binds to HER2 through its intracellular domain, thereby increasing HER2 interaction with the non-receptor tyrosine kinase c-SRC (SRC), leading to trastuzumab resistance. Taken together, our findings establish that CDCP1 is a modulator of HER2 signaling and a biomarker for the stratification of breast cancer patients with poor prognosis. Our results also provide a rationale for therapeutic targeting of CDCP1 in HER2-positive breast cancer patients

    Reactogenicity of COVID-19 vaccine in hemodialysis patients: a single-center retrospective study

    No full text
    : Introduction: Some hemodialysis patients are reluctant to undergo COVID-19 vaccination for the fear of developing adverse events (AEs). The aim of this study was to verify the safety of the mRNA-1273 vaccine in hemodialysis patients. Methods: We conducted a retrospective analysis of in-center hemodialysis patients who underwent mRNA-1273 vaccine from March 1st to April 30th, 2021. All AEs occurring after the first and the second doses were collected and classified as local or systemic. Results: Overall, 126 patients on chronic maintenance dialysis without a prior COVID-19 diagnosis were vaccinated with two doses of mRNA-1273 vaccine. Mean age was 68 (IQR, 54,7-76) years and 53.6% of patients were aged ≥65 years. During the observational period of 68 (IQR, 66-70) days, AEs occurred in 57.9% and 61.9% of patients after the first dose and second dose, respectively. The most common AEs were: injection-site pain (61.9%), erythema (4.8%), itching (4.8%), swelling (16.7%), axillary swelling/tenderness (2.4%), fever (17.5%) headache (7.9%), fatigue (23.8%), myalgia (17.5%), arthralgia (12.7%), dyspnoea (2.4%), nausea/vomiting (7.1%), diarrhoea (5.6%), shivers (4%) and vertigo (1.6%). The rates of local AEs were similar after the first and second doses (P=0.8), whereas systemic AEs occurred more frequently after the second dose (P=0.001). Fever (P=0.03), fatigue (P=0.02) and nausea/vomiting (P=0.03) were significantly more frequent after the second dose of the vaccine. There were no age-related differences in the rate of AEs. Overall, vaccine-related AEs in hemodialysis patients seem to be lower than in the general population. Conclusion: The RNA-1273 vaccine was associated with the development of transient AEs after the first and second doses in patients on chronic maintenance hemodialysis. They were mostly local, whereas systemic AEs were more prevalent after the second dose. Overall, all AEs lasted for a few days, without any apparent sequelae.Introduction: Some hemodialysis patients are reluctant to undergo COVID-19 vaccination for the fear of developing adverse events (AEs). The aim of this study was to verify the safety of the mRNA-1273 vaccine in hemodialysis patients. Methods: We conducted a retrospective analysis of in-center hemodialysis patients who underwent mRNA-1273 vaccine from March 1st to April 30th, 2021. All AEs occurring after the first and the second doses were collected and classified as local or systemic. Results: Overall, 126 patients on chronic maintenance dialysis without a prior COVID-19 diagnosis were vaccinated with two doses of mRNA-1273 vaccine. Mean age was 68 (IQR, 54,7-76) years and 53.6% of patients were aged ≥65 years. During the observational period of 68 (IQR, 66-70) days, AEs occurred in 57.9% and 61.9% of patients after the first dose and second dose, respectively. The most common AEs were: injection-site pain (61.9%), erythema (4.8%), itching (4.8%), swelling (16.7%), axillary swelling/tenderness (2.4%), fever (17.5%) headache (7.9%), fatigue (23.8%), myalgia (17.5%), arthralgia (12.7%), dyspnoea (2.4%), nausea/vomiting (7.1%), diarrhoea (5.6%), shivers (4%) and vertigo (1.6%). The rates of local AEs were similar after the first and second doses (P=0.8), whereas systemic AEs occurred more frequently after the second dose (P=0.001). Fever (P=0.03), fatigue (P=0.02) and nausea/vomiting (P=0.03) were significantly more frequent after the second dose of the vaccine. There were no age-related differences in the rate of AEs. Overall, vaccine-related AEs in hemodialysis patients seem to be lower than in the general population. Conclusion: The RNA-1273 vaccine was associated with the development of transient AEs after the first and second doses in patients on chronic maintenance hemodialysis. They were mostly local, whereas systemic AEs were more prevalent after the second dose. Overall, all AEs lasted for a few days, without any apparent sequelae

    Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity

    Get PDF
    Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments

    Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer.

    No full text
    Aberrant activation of oncogenes or loss of tumour suppressor genes opposes malignant transformation by triggering a stable arrest in cell growth, which is termed cellular senescence. This process is finely tuned by both cell-autonomous and non-cell-autonomous mechanisms that regulate the entry of tumour cells to senescence. Whether tumour-infiltrating immune cells can oppose senescence is unknown. Here we show that at the onset of senescence, PTEN null prostate tumours in mice are massively infiltrated by a population of CD11b(+)Gr-1(+) myeloid cells that protect a fraction of proliferating tumour cells from senescence, thus sustaining tumour growth. Mechanistically, we found that Gr-1(+) cells antagonize senescence in a paracrine manner by interfering with the senescence-associated secretory phenotype of the tumour through the secretion of interleukin-1 receptor antagonist (IL-1RA). Strikingly, Pten-loss-induced cellular senescence was enhanced in vivo when Il1ra knockout myeloid cells were adoptively transferred to PTEN null mice. Therapeutically, docetaxel-induced senescence and efficacy were higher in PTEN null tumours when the percentage of tumour-infiltrating CD11b(+)Gr-1(+) myeloid cells was reduced using an antagonist of CXC chemokine receptor 2 (CXCR2). Taken together, our findings identify a novel non-cell-autonomous network, established by innate immunity, that controls senescence evasion and chemoresistance. Targeting this network provides novel opportunities for cancer therapy

    Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer

    No full text
    Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16(INK4a) induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours
    corecore