412 research outputs found

    Loss-tolerant quantum secure positioning with weak laser sources

    Get PDF
    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.Comment: 11 pages, 3 figures. Partially based on an earlier work in arXiv:1510.0489

    Virtual reality and surgical oncology

    Get PDF
    More than 80% of people diagnosed with cancer will require surgery. However, less than 5% have access to safe, affordable and timely surgery in low- and middle-income countries (LMICs) settings mostly due to the lack of trained workforce. Since its creation, virtual reality (VR) has been heralded as a viable adjunct to surgical training, but its adoption in surgical oncology to date is poorly understood. We undertook a systematic review to determine the application of VR across different surgical specialties, modalities and cancer pathway globally between January 2011 and 2021. We reviewed their characteristics and respective methods of validation of 24 articles. The results revealed gaps in application and accessibility of VR with a proclivity for high-income countries and high-risk, complex oncological surgeries. There is a lack of standardisation of clinical evaluation of VR, both in terms of clinical trials and implementation science. While all VR illustrated face and content validity, only around two-third exhibited construct validity and predictive validity was lacking overall. In conclusion, the asynchrony between VR development and actual global cancer surgery demand means the technology is not effectively, efficiently and equitably utilised to realise its surgical capacity-building potential. Future research should prioritise cost-effective VR technologies with predictive validity for high demand, open cancer surgeries required in LMICs.</p

    New insights on the Draco dwarf spheroidal galaxy from SDSS: a larger radius and no tidal tails

    Get PDF
    We have investigated the spatial extent and structure of the Draco dwarf spheroidal galaxy using deep wide-field multicolor CCD photometry from the Sloan Digital Sky Survey (SDSS). Our study covers an area of 27 square degrees around the center of the Draco dwarf. We show that the spatial distribution of Draco's red giants, red horizontal branch stars and subgiants down to i=21.7 mag does not provide evidence for the existence of tidally induced tails or a halo of unbound stars. The radial profile can be fit by King models as well as by a generalized exponential. The core radius and the limiting (or tidal) radius along the major axis are 7.7' and 40.1', respectively, making Draco 40% larger than previously measured. Down to our magnitude limit tidal effects can only exist at a level of 10^-3 of the central surface density of Draco or below. The regular structure of Draco found from the new data argues against it being a portion of an unbound tidal stream and lends support to the assumption of dynamical equilibrium. We estimate Draco's total mass to be 2.2 - 3.5 times 10^7 solar masses. We obtain an overall mass-to-light ratio of 146+-42 or 92+-28 solar masses depending on the details of the mass and luminosity estimates. In summary, our results strengthen the case for a strongly dark matter dominated, bound stellar system. (Abstract strongly abridged).Comment: 30 pages, 11 figures (in part with degraded resolution). Accepted for publication in the Astronomical Journa

    Clonal Haematopoiesis and Risk of Chronic Liver Disease

    Get PDF
    Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P \u3c 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). to assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P \u3c 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response

    Quantitative Proteomics Reveals Myosin and Actin as Promising Saliva Biomarkers for Distinguishing Pre-Malignant and Malignant Oral Lesions

    Get PDF
    Oral cancer survival rates increase significantly when it is detected and treated early. Unfortunately, clinicians now lack tests which easily and reliably distinguish pre-malignant oral lesions from those already transitioned to malignancy. A test for proteins, ones found in non-invasively-collected whole saliva and whose abundances distinguish these lesion types, would meet this critical need.To discover such proteins, in a first-of-its-kind study we used advanced mass spectrometry-based quantitative proteomics analysis of the pooled soluble fraction of whole saliva from four subjects with pre-malignant lesions and four with malignant lesions. We prioritized candidate biomarkers via bioinformatics and validated selected proteins by western blotting. Bioinformatic analysis of differentially abundant proteins and initial western blotting revealed increased abundance of myosin and actin in patients with malignant lesions. We validated those results by additional western blotting of individual whole saliva samples from twelve other subjects with pre-malignant oral lesions and twelve with malignant oral lesions. Sensitivity/specificity values for distinguishing between different lesion types were 100%/75% (p = 0.002) for actin, and 67%/83% (p<0.00001) for myosin in soluble saliva. Exfoliated epithelial cells from subjects' saliva also showed increased myosin and actin abundance in those with malignant lesions, linking our observations in soluble saliva to abundance differences between pre-malignant and malignant cells.Salivary actin and myosin abundances distinguish oral lesion types with sensitivity and specificity rivaling other non-invasive oral cancer tests. Our findings provide a promising starting point for the development of non-invasive and inexpensive salivary tests to reliably detect oral cancer early
    • …
    corecore