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In this paper, we propose a new multi-resonator metamaterial (MRM) for attenuating 

impact stress waves. Theoretical analyses show that the MRM has wider band gaps 

than those of a single-resonator metamaterial (SRM) and a dual-resonator 

metamaterial (DRM), and numerical studies are conducted to compare the 

performances of the MRM, SRM, and DRM in mitigating impact forces. The 

influences of the number of unit cells, the spring stiffnesses, and the resonator masses 

on the mitigation of impact force are analyzed by studying a one-dimensional impact 

wave model. In addition, the calculation results of a three-dimensional crash model 

clearly confirm the outstanding features of the MRM, which can provide a thin and 

light structure with a wider attenuation region of the frequency spectrum and a better 

mitigation effect of the impact force. 
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I. INTRODUCTION 

Metamaterials are artificial composite materials that have extraordinary physical 

properties not commonly possessed by natural materials. The metamaterials studied 

the most to date are electromagnetic metamaterials,
1–5

 thermal metamaterials,
6–10

 

photonic metamaterials,
11,12

 and acoustic metamaterials (AMs).
13–19

 The design of 

these metamaterials overcomes the limitations of some natural laws by properly 

designing the internal mechanical structure instead of the chemical constituents. 

Because of their exceptional ability to manipulate stress waves, AMs have 

attracted much research interest.
20–22

 Cselyuszka et al.
23

 presented a one-dimensional 

(1D) locally resonant AM with negative effective mass density. Assouar et al.
24

 studied 

two plate-type AMs both theoretically and numerically and achieved high sound 

transmission loss with them. Wang
25

 designed a new representative cell of an elastic 

metamaterial that could generate negative mass and negative modulus by translating 

and rotating the cell in a controlled manner. As well as the aforementioned theoretical 

studies, the potential engineering applications of AMs have been widely studied for 

acoustic attenuation,
26,27

 noise control,
28–35

 invisibility cloaking,
36

 and energy 

absorption.
37,38

 

The specially designed microstructure of an AM plays an important role in its 

performance. Therefore, there has been much research effort on AM microstructures 

for prohibiting/controlling the propagation of stress waves. Recently, a 

single-resonator metamaterial (SRM) was proposed for manipulating stress waves, 

and its performance has been studied theoretically, numerically, and 

http://xueshu.baidu.com/s?wd=paperuri%3A%286ce0073ebc99f3b99d8ef3e4a2efa17e%29&filter=sc_long_sign&sc_ks_para=q%3DHoley%20silicon%20as%20an%20efficient%20thermoelectric%20material&sc_us=7183368099466530676&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
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experimentally.
39–43

 Zhou et al.
44

 and Banerjee et al.
45

 showed that an SRM can have 

two band gaps. The width of the second band gap is theoretically infinite and the first 

band gap can be divided into two parts, one due to the high effective mass and the 

other due to the negative effective mass (NEM). Liu et al.
46

 discussed how the 

relevant parameters affect the band gap of the 1D single-resonator lattice system, and 

a method was provided for calculating the upper limit of the second stopband. It is 

worth noting that the unit cells in the 1D metamaterial proposed by Zhou et al.,
44

 

Banerjee et al.,
45

 and Liu et al.
46

 are connected by the external springs, and the second 

band gap and the lower part of the first band gap are produced by the presence of 

these springs. 

Driven by these SRM features, Tan et al.
47,48

 proposed a dual-resonator 

metamaterial (DRM) to further improve the attenuation of mechanical waves. Their 

theoretical and numerical results showed that a DRM has a wider band gap and better 

attenuates mechanical waves compared with an SRM. Despite a DRM being better at 

attenuating frequency spectra, its performance remains unsatisfactory for problems 

involving a wide frequency spectrum. To address practical requirements, there is a 

compelling need to design AM microstructures with wide and multiple band gaps. 

In the present paper, a new multi-resonator metamaterial (MRM) is proposed. 

Unlike SRMs and DRMs, a unit cell of an MRM can be seen as the combination of a 

pair of DRM unit cells. In addition, the unit cells of the present lattice system are 

directly rigidly connected, avoiding the need for external springs. Therefore, the 

material studied herein is a special version of a 1D metamaterial. The present 

theoretical analyses show that an MRM has more band gaps and a wider frequency 
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region associated with NEM compared with SRMs and DRMs, which implies that an 

MRM can attenuate impact stress waves more effectively. Herein, we study 

quantitatively the performances of SRM, DRM, and MRM AMs at mitigating impact 

force. We use a 1D impact wave model to study how the number of unit cells, the 

spring stiffness, and the resonator mass influence the performances of an SRM, DRM, 

and MRM in attenuating stress waves. In addition, the results of the 1D impact wave 

model and a three-dimensional (3D) crash model reveal that an MRM with light and 

thin properties is always superior to an SRM and a DRM.  

This paper is organized as follows. In Section II, we consider the designed AM 

microstructures theoretically. In Section III, we report on parametric studies of the 

three types of AM with the 1D impact wave model. In Section IV, we apply the 3D 

crash model to the three types of AM. Finally, we draw conclusions in Section V. 

II. MICROSTRUCTURES OF ACOUSTIC METAMATERIALS 

Herein, we study the attenuation effects of AMs based on their property of NEM. 

Single-resonator and dual-resonator microstructures
47,48

 have been studied widely and 

have been shown to exhibit a stopband and NEM. In this section, we consider briefly 

the propagation and mitigation of a mechanical wave in a 1D lattice system with 

locally resonant microstructures. 
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FIG. 1. (a) Microstructure of single-resonator metamaterial (SRM). (b) One-dimensional (1D) single-resonator lattice system. (c) 

1D single-resonator lattice system with outer spring k1 (k1 → ∞). (d) 1D monatomic lattice system with outer spring k1 (k1 → ∞). 

(e) Curves of dimensionless effective mass for an SRM with different values of θ. 
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Figure 1(a) shows the single-resonator microstructure with external and internal 

masses m1 and m2, respectively, the displacements of which are u1 and u2, respectively. 

A linear spring of stiffness k2 connects the internal and external masses. Figure 1(b) 

shows the 1D spring–mass lattice system comprising single-resonator microstructures. 

This SRM can be regarded as a spring–mass lattice system that is connected by outer 

springs of stiffness k1 (k1 → ∞) as illustrated in Fig. 1(c). As such, the motions of the 

outer and inner masses of each unit cell can be assumed to satisfy periodic boundary 

conditions, allowing us to obtain the dispersion equation and the effective mass of the 

system. Based on Floquet–Bloch theory, the harmonic displacement of unit cell j+n is 

written as 

u
a

( j+n) =
⌢
u

a
e i (qx+nqa-wt )

,  (1) 

where ( )j nu


  is the displacement of rigid mass α in unit cell j+n of the system, ω is the 

angular frequency, q is the wavenumber, 
⌢
u

a
 is the displacement amplitude, and a is 

the lattice constant. For the 1D lattice system shown in Fig. 1(c), the equations for the 

rigid masses in unit cell j are obtained as follows based on Newton’s Second Law: 

,  (2) 

.  (3) 

By substituting Eq. (1) into Eqs. (2) and (3), the dispersion relation of the lattice 

system can be calculated as 

2 2

2 2

2

2

( ) [( ) (1 )]
cos 1

2 ( ) 1
qa

    

  

 
 


,  (4) 

where θ = m2/m1 is the ratio of internal mass m2 to external mass m1, δ = k2/k1 is the 

ratio of internal spring stiffness k2 to external spring stiffness k1; as k1 → ∞, δ → 0 
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and Eq. (4) can be written as cos(qa) → 1 and q → 0. 

As shown in Fig. 1(d), we regard this single-resonator lattice system as a 

monatomic lattice system whose effective mass meff is 

1

2

2 (1 cos )
eff

k qa
m




 .  (5) 

Based on Eqs. (4) and (5), the effective mass of the single-resonator microstructure is 

therefore 

2

2 2

1 2 2

2

eff

m
m m



 
 


,  (6) 

the value of which clearly depends on the frequency ω2. When the input frequency ω 

approaches the local frequency ω2, the value of meff changes considerably. Finally, we 

obtain the dimensionless effective mass meff/mst, which is the ratio of the effective 

mass meff to the static mass mst of the microstructure: 

2

2

2

2

( )
1

1 1 ( )

eff

st

m

m

 

  

 
   

  
.  (7) 

The parameter θ clearly has an important influence on the value of the dimensionless 

effective mass meff/mst. The curve of meff/mst against the dimensionless frequency ω/ω2 

is shown in Fig. 1(e), where there is a narrow frequency range in which meff/mst is 

negative. Previous work
41

 indicated that this frequency region associated with NEM 

corresponds to the attenuation band gap for mechanical wave propagation. NEM is 

produced when the input frequency reaches the local resonance frequency, and the 

band gap widens with increase of θ. 

NEM is produced when the inequality 0
eff st

m m   is satisfied, leading to the 

inequality 
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2 2
1     .  (8) 

The local resonance frequency of an SRM clearly has an important effect on its 

dimensionless effective mass based on Eq. (8). Increasing that frequency broadens the 

frequency range associated with NEM. For example, for a mass ratio θ = 1, the local 

resonance frequency is ω2 = 500 Hz and the frequency region associated with NEM is 

500 Hz < ω < 707 Hz. Changing the local resonance frequency to ω2 = 1,000 Hz, the 

frequency region associated with NEM extends naturally to 1,000 Hz < ω < 1,414 Hz 

and a wider band gap is produced in the high-frequency domain. 
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FIG. 2. (a) Microstructure of dual-resonator metamaterial (DRM). (b) 1D 

dual-resonator lattice system. Curves of dimensionless effective mass for a DRM with 

different values of (c) θ1, (d) δ1, and (e) θ3. 
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Figure 2(a) shows the dual-resonator microstructure with three masses coupled 

by linear springs. The external, middle, and internal resonator masses are m1, m3, and 

m2, respectively, with displacements u1, u3, and u2, respectively, and k3 and k2 are the 

spring stiffnesses. The 1D dual-resonator lattice system comprising dual-resonator 

microstructures is shown in Fig. 2(b). Based on the same principle as that applied to 

Fig. 1, the equations of motion for unit cell j are 

,  (9) 

, (10) 

. (11) 

Similar to the single-resonator microstructure, the dimensionless effective mass 

meff/mst of the dual-resonator microstructure is obtained as 

2

1 2 1 2

2 2

1 2 1 2 1 2 1 2 2 1 1 1 2 1

1 -( )
+

+ + + + [1 ( ) ][1 ( / )( ) ]

eff

st

m

m

    

             

 
  

    
, (12) 

where θ1 = m2/m3 is the ratio of internal mass m2 to middle mass m3, θ2 = m2/m1 is the 

ratio of internal mass m2 to external mass m1, θ3 = m3/m1 is the ratio of middle mass 

m3 to outer mass m1, δ1 = k2/k3 is the ratio of internal spring stiffness k2 to middle 

spring stiffness k3, and 
2 2 2
= k m  is the local resonance frequency of internal mass 

m2. 

Figures 2(c)–2(e) show how θ1, θ3, and δ1 influence the dimensionless effective 

mass meff/mst. The DRM clearly has a wider frequency range associated with NEM 

than that of the SRM because of the double band gaps of the former. As shown in 

Fig. 2(c), the band-gap region widens as θ1 is increased, with the widening of the 
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second band gap being particularly obvious. However, Fig. 2(d) shows that the effect 

of δ1 is opposite to that of θ1: the frequency region associated with NEM narrows as 

δ1 is increased (i.e., either k2 is increased of k3 is decreased). In addition, as shown in 

Fig. 2(e), increasing parameter θ3 widens these two band gaps simultaneously. 
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FIG. 3. (a) Multi-resonator microstructure. (b) 1D multi-resonator lattice system. 

Three-dimensional (3D) graph of dimensionless effective mass against dimensionless 

frequencies: (c) global view; (d) bottom view. 

 

As shown in Fig. 3(a), we propose a new multi-resonator microstructure that is 
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the linear combination of two dual-resonator microstructures. The new model 

contains five rigid masses, namely internal masses m2 and m4, middle masses m3 and 

m5, and outer mass m1, with displacements u2, u4, u3, u5, and u1, respectively. The 

spring stiffnesses are k2, k3, k4, and k5. Figure 3(b) shows the 1D multi-resonator 

lattice system comprising multi-resonator microstructures, and the equations of 

motion of the rigid masses for unit cell j are 

, (13) 

, (14) 

, (15) 

, (16) 

. (17) 

Analogously, the dimensionless effective mass meff/mst of the multi-resonator 

microstructure is given as 

2 3 4 5

2

3 2 2 2

2 2 2

2 3 4 5 2 2 2 2 2 2

2

5 4 4 4

2 2 2

2 3 4 5 4 4 4 4 4 4

1

1+( +1) (1+ )

(( ) 1)
       +

1+( +1) (1+ ) ( ) ( ( ) 1)+ (( ) 1)

(( ) 1)
       +

1+( +1) (1+ ) ( ) ( ( ) 1)+ (( ) 1)

eff

st

m

m    

    

            

    

            




 

   

 

   
,
 

(18) 

where γ2 = m2/m1 is the ratio of the left inner mass m2 to external mass m1, γ3 = m3/m1 

is the ratio of the left middle mass m3 to external mass m1, γ4 = m4/m1 is the ratio of 

the right inner mass m4 to outer mass m1, γ5 = m5/m1 is the ratio of the right middle 

mass m5 to external mass m1, θ2 = m2/m3 is the ratio of the left internal mass m2 to the 

left middle mass m3, δ2 = k2/k3 is the ratio of the left internal spring stiffness k2 to the 

left middle spring stiffness k3, θ4 = m4/m5 is the ratio of the right internal mass m4 to 
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the right middle mass m5, and δ4 = k4/k5 is the ratio of the right internal spring 

stiffness k4 to the right middle spring stiffness k5. 

Figures 3(c) and 3(d) show global and bottom views, respectively, of the 3D graph of 

dimensionless effective mass meff/mst against dimensionless frequencies ω/ω2 and 

ω/ω4. There are clearly four band gaps in these two pictures, with the first band gaps 

on the ω/ω2 and ω/ω4 axes shown in yellow to distinguish them from the second band 

gaps on those two axes. Furthermore, because of its multiple band gaps, we expect 

that the proposed MRM can achieve a wider frequency region associated with NEM 

compared with an SRM and a DRM. The MRM microstructure involves six 

parameters, but only θ2, δ2, and γ3 are studied in this section because of the symmetry 

of this microstructure. Figure 4 shows two-dimensional (2D) plots of meff/mst against 

ω/ω2 for the MRM to allow is to evaluate how these parameters affect these band gaps. 

From Fig. 4(a), increasing θ2 (i.e., either increasing m2 or decreasing m3) widens the 

band gaps on the ω/ω2 axis, and this increase is particularly pronounced for the 

second band gap. By contrast, Fig. 4(b) shows that increasing δ2 narrows the 

frequency region associated with NEM on the ω/ω2 axis, and continuing to increase δ2 

causes the second band gap to disappear. Figure 4(c) shows the positive influence of 

parameter γ3 on these two band gaps: as γ3 is increased, the two band gaps widen 

considerably. Therefore, the above parametric analyses imply that AMs with better 

attenuation can be achieved by the proper design of the spring stiffness and the rigid 

mass.  
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FIG. 4. Two-dimensional (2D) plots of dimensionless effective mass against 

dimensionless frequency ω/ω2 for a multi-resonator metamaterial (MRM) with  

different values of (a) θ2, (b) δ1, and (c) r3. 

 

III. ONE-DIMENSIONAL IMPACT WAVE MODEL 

In this section, we use a 1D impact wave model to study the attenuation effects 

of AMs. As shown in Fig. 5(a), the 1D model is divided into mediums 1, 2, and 3, 

with medium 3 being an AM model (SRM, DRM, or MRM) as shown in Fig. 5(b). 

The impact wave specified by  

0

max 0

0 0

d

t t

t
F F e

F

t t

t











 (19) 

is applied to the front of medium 1, where Fmax is the peak impact force, t0 = 0.5 ms, 

and td = 0.1 ms. The duration time of the entire wave is 6 ms. We used the 

commercial software LSDYNA to conduct the analysis, selecting the impact force of 

element 20 in medium 2 as the output response. The impact force and its frequency 

spectrum obtained with a fast Fourier transform are shown in Fig. 6, which shows that 

the peak impact force is 303 N and the frequency range is 0–5,000 Hz. 
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FIG. 5. 1D impact wave model: (a) schematic; (b) with medium 3 represented as an 

AM. 
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FIG. 6. Impact force: (a) time series; (b) frequency spectrum of (a) obtained with a 

fast Fourier transform. 

 

We discuss how the specific number of unit cells and the spring stiffnesses 

influence the AM performance. The rigid masses, spring stiffnesses, and local 

resonance frequencies in one unit cell of the SRM, DRM, and MRM are listed in 

Table 1. It is worth noting that unlike the SRM and DRM, the MRM has two local 

resonance frequencies due to its two internal resonator masses m2 and m4 in one unit 

cell. There are five groups of parameters in Table 1 for all the AMs. The number N of 

unit cells in each group is presented in the final column of the table. The internal 
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masses and outer mass in one unit cell of all the AM models are set as 0.03 kg, which 

means that the mass ratio θ of the SRM and those of θ1 and θ3 of the DRM and θ2, γ3, 

θ4, and γ5 of the MRM are all equal to unity. Because of the fixed rigid masses and 

mass ratios, it is the spring stiffnesses in Table 1 that determine the overall 

performance of each AM. 

 

Table 1. Parameters of one unit cell in three different AM models. 

  m1, m2, m3, m4, m5 (kg) k2, k3, k4, k5 (kN/mm) ω2, ω4 (Hz) N 

SRM group 1 0.03, 0.03, -, -, - 0.296, -, -, - 500, - 1 

group 2 0.03, 0.03, -, -, - 0.296, -, -, - 500, - 5 

group 3 0.03, 0.03, -, -, - 0.296, -, -, - 500, - 10 

group 4 0.03, 0.03, -, -, - 4.747, -, -, - 2000, - 5 

group 5 0.03, 0.03, -, -, - 14.508, -, -, - 3000, - 5 

DRM group 1 0.03, 0.03, 0.03, -, - 0.296, 2.665, -, - 500, - 1 

group 2 0.03, 0.03, 0.03, -, - 0.296, 2.665, -, - 500, - 5 

group 3 0.03, 0.03, 0.03, -, - 0.296, 2.665, -, - 500, - 10 

group 4 0.03, 0.03, 0.03, -, - 0.296, 4.737, -, - 500, - 5 

group 5 0.03, 0.03, 0.03, -, - 0.296, 14.508, -, - 500, - 5 

MRM group 1 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000 1 

group 2 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000 5 

group 3 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000 10 

group 4 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 4.737, 1.184, 7.402 500, 1000 5 

group 5 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 7.402, 1.184, 14.508 500, 1000 5 

 

Figure 7 and Table 2 compare the results for the frequency spectrum and impact 

force of all the AM models. It is worth noting the considerable drop in spectral 

amplitude at the local resonance frequencies of each AM model in Fig. 7(a). 

Figure 7(b) shows how each AM mitigates the impact force. In groups 1, 2, and 3, the 

number of unit cells in each model is changed from one to 10. The maximum impact 

forces for the SRM, DRM, and MRM models are reduced from 0.302 kN to 0.233 kN, 

javascript:void(0);
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from 0.285 kN to 0.176 kN, and from 0.263 kN to 0.120 kN, respectively. In addition, 

in the frequency range associated with attenuation, the spectral amplitude decreases 

rapidly with the number of unit cells. Therefore, both the spectral amplitude and the 

peak impact force are reduced considerably by increasing the number of unit cells. 
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FIG. 7. (a) Attenuation of frequency spectrum with different acoustic metamaterials 

(AMs). (b) Mitigation of impact force with different AMs. 

 



19 
 

For groups 2, 4, and 5 in Fig. 7(b) and Table 2, the mitigation of impact force in 

all the AM models increases initially and then decreases upon increasing the SRM 

local resonance frequency and decreasing the DRM spring stiffness ratio δ1 and the 

MRM spring stiffness ratios δ2 and δ4. The main reason for this phenomenon is that 

the frequency range of this impact-force curve is 0–5,000 Hz, and its spectral 

amplitude decreases rapidly as the frequency increases. Therefore, the spectral 

amplitude in the high-frequency region is very small. For groups 2 and 4 in Fig. 7(a), 

the attenuation range of the SRM frequency spectrum broadens as the local resonance 

frequency is increased. In addition, the second DRM band gap and the third and 

fourth MRM band gaps widen as the DRM spring stiffness ratio δ1 and the MRM 

spring stiffness ratios δ2 and δ4 are decreased. Thus, the attenuation effects of these 

three AM models increase. However, as the local SRM resonance frequency is 

increased continuously and the DRM and MRM spring stiffness ratios are decreased 

continuously, the attenuation region reaches the high-frequency region for groups 4 

and 5 as shown in Fig. 7(a). The SRM band gap (the only one), the second DRM band 

gap (of two), and the third and fourth MRM band gaps (of four) approach 5,000 Hz, 

and the attenuation effects of these AMs are reduced despite their large attenuation 

ranges in the high-frequency region. Therefore, the proper design of the spring 

stiffness can improve the SRM, DRM, and MRM performances. In addition, the peak 

impact force achieved with 10 MRM unit cells is 0.120 kN. With the same 10 unit 

cells, the peak SRM and DRM impact forces are 0.233 kN and 0.176 kN, respectively. 

Therefore, it is clear that the MRM outperforms both the SRM and the DRM. 
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In Table 3, the spring stiffness ratios (DRM and MRM), the local resonance 

frequency, and the number of unit cells are the same for each AM model. The mass 

ratios θ (SRM), θ1 and θ3 (DRM), and θ2, γ3, θ4, and γ5 (MRM) for group 2 are larger 

than those for group 1. In each AM model, the internal resonator mass for group 3 is 

0.06 kg (twice that for group 1). 

 

Table 2. Maximum impact forces for three different AM models. 

 Original (kN) SRM (kN) DRM (kN) MRM (kN) 

group 1  

0.303 

0.302 0.285 0.263 

group 2 0.275 0.228 0.172 

group 3 0.233 0.176 0.120 

group 4 0.213 0.212 0.163 

group 5 0.238 0.231 0.182 

 

Table 3. The spring stiffnesses and rigid masses in one unit cell of these three 

AM models. 

  m1, m2, m3, m4, m5 (kg) k2, k3, k4, k5 (kN/mm) ω2, ω4 (Hz) N 

SRM group 1 0.03, 0.03, -, -, - 1.184, -, -, - 1000, - 5 

group 2 0.02, 0.04, -, -, - 1.579, -, -, - 1000, - 5 

group 3 0.03, 0.06, -, -, - 2.369, -, -, - 1000, - 5 

DRM 
group 1 0.03, 0.03, 0.03, -, - 0.296, 2.665, -, - 500, - 5 

group 2 0.01, 0.03, 0.05, -, - 0.493, 4.439, -, - 500, - 5 

group 3 0.03, 0.06, 0.06, -, - 0.592, 5.330, -, - 500, - 5 

MRM 
group 1 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000 5 

group 2 0.01, 0.03, 0.04, 0.03, 0.04 0.493, 4.439, 1.974, 7.898 500, 1000 5 

group 3 0.03, 0.06, 0.06, 0.06, 0.06 0.592, 5.330, 2.369, 9.475 500, 1000 5 

 

The results for frequency spectrum and impact force are shown in Fig. 8 and 

Table 4, respectively. These numerical results agree very well with the theoretical 

ones in Figs. 1(b), 1(d), and 1(f) and Figs. 4(a) and 4(c). First, with the same total 

static mass, Fig. 8 and Table 4 show an obviously improved mitigation of impact 
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force for groups 1 and 2 as the mass ratios increase for all the AM models. The 

maximum impact forces with the SRM, DRM, and MRM models are reduced from 

0.252 kN to 0.246 kN, from 0.228 kN to 0.214 kN, and from 0.172 kN to 0.163kN, 

respectively. Second, groups 1 and 3 indicate a positive relationship between the 

internal resonator mass and the attenuation effect. For each AM model, the 

mitigations of the frequency spectrum and the impact force improve considerably as 

the resonator mass is increased. In addition, the minimum peak impact force of 

0.118 kN is achieved by the MRM, which obviously outperforms the SRM and DRM 

with the same five unit cells. 

 

Table 4. Maximum impact forces with each AM model. 

 Original (kN) SRM (kN) DRM (kN) MRM (kN) 

group 1  

0.303 

0.252 0.228 0.172 

group 2 0.246 0.214 0.163 

group 3 0.224 0.185 0.118 
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FIG. 8. (a) Attenuation of frequency spectrum with different AMs. (b) Mitigation of 

impact force with different AMs. 
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One MRM unit cell can be seen as the linear combination of either two DRM 

unit cells or four SRM unit cells. For comparative analyses, we use three AM models: 

one comprising one MRM unit cell, one comprising two DRM unit cells, and one 

comprising four SRM unit cells. The detailed parameters for the one MRM unit cell, 

the two DRM unit cells, and the four SRM unit cells are presented in Table 5. 

Figure 9 and Table 6 show the results for the frequency spectrum and impact force, 

respectively, with these three AM models. 

 

Table 5. Parameters for one MRM unit cell, two DRM unit cells, and four SRM unit 

cells. 

 m1, m2, m3, m4, m5 (kg) k2, k3, k4, k5 (kN/mm) ω2, ω4 (Hz) N 

MRM 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000 1 

     

 m1, m2, m3, m2, m3 (kg) k2, k3, k2, k3 (kN/mm) ω2, ω2 (Hz) N 

DRM 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000 2 

     

 m1, m2, m2, m2, m2 (kg) k2, k2, k2, k2 (kN/mm) ω2, ω2, ω2, ω2, (Hz) N 

SRM 0.03, 0.03, 0.03, 0.03, 0.03 0.296, 2.665, 1.184, 4.737 500, 1000, 1500, 2000 4 
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FIG. 9. (a) Attenuation of frequency spectrum with different AMs. (b) Mitigation of 

impact force with different AMs. 
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Table 6. Maximum impact force with three different AM models. 

Original (kN) SRM (kN) DRM (kN) MRM (kN) 

0.303 0.260 0.265 0.263 

 

Figure 9(b) and Table 6 show that the maximum impact forces with the SRM, 

DRM, and MRM models are 0.260 kN, 0.265 kN, and 0.263 kN, respectively. 

Together with Fig. 9(a), it is clear that the mitigations of frequency spectrum and 

impact force with these three AM models are very close. This indicates that the 

performance of one MRM unit cell is similar to those of four SRM unit cells and two 

DRM unit cells. In addition, because the outer mass m1 is used less, the mass of one 

MRM unit cell is less than that of two DRM unit cells, and the mass of two DRM unit 

cells is less than that of four MRM unit cells. Therefore, the MRM model with its 

fewer unit cells and lower structural mass is more effective than the SRM and DRM 

models, and the excellent performance of the MRM in mitigating impact waves is 

clear. 

 

IV. THREE-DIMENSIONAL CRASH MODEL 

Instead of the 1D impact wave model in Section III, we use a crash model here to 

study further how AMs mitigate impact force. The characteristics of an actual crash 

make it difficult to obtain the exact frequency spectrum of the impact force. Therefore, 

with the present crash model, we study how impact force is mitigated without 

knowing its frequency spectrum. 

As shown in Fig. 10(a), we begin by establishing a 3D beam structure. The six 
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degrees of freedom at one end of the beam are constrained, while a rigid plate with an 

initial speed of 13.8 m/s horizontally impacts the other end of the beam. The beam 

structure is divided into parts 1, 2, and 3. The impact force at the end of part 2 is 

acquired as the output response, and the duration of the entire collision is 1 ms. We 

used the commercial software LSDYNA to conduct the study. 

 

(a) 

Unit cell

Part 1 Part 2Metamaterials

Constrained

V=13.8 m/s
 

(b) 

FIG. 10. (a) 3D crash model. (b) Schematic of crash model with AM. 

 

Table 7. Parameters for two MRM unit cells, four DRM unit cells, and eight SRM 

unit cells. 

 m1, m2, m3, m4, m5 (kg) k2, k3, k4, k5 (kN/mm) ω2, ω4 (Hz) N 

MRM 0.01, 0.03, 0.03, 0.03, 0.03 1.184, 4.737, 2.665, 7.402 1000, 1500 2 

     

 m1, m2, m3, m2, m3 (kg) k2, k3, k2, k3 (kN/mm) ω2, ω2 (Hz) N 

DRM 0.01, 0.03, 0.03, 0.03, 0.03 1.184, 4.737, 2.665, 7.402 1000, 1500 4 

     

 m1, m2, m2, m2, m2 (kg) k2, k2, k2, k2 (kN/mm) ω2, ω2, ω2, ω2, (Hz) N 

SRM 0.01, 0.03, 0.03, 0.03, 0.03 1.184, 4.737, 2.665, 7.402 1000, 2000, 1500, 2500 8 
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As shown in Fig. 10(b), we insert an AM (SRM, DRM, or MRM) as part 3 to 

mitigate the impact force. First, we use eight SRM unit cells, four DRM unit cells, 

and two MRM unit cells to demonstrate the superior mitigation effect of the MRM. 

Second, we use 10 SRM unit cells, 10 DRM unit cells, and 10 MRM unit cells in the 

impact model to compare the performances of the three AM models with the same 

number of unit cells. The internal resonator masses of these AM models are all 

0.03 kg, and the outer mass is 0.01 kg. Tables 7 and 8 give the parameters of all the 

AM models, and Fig. 11 and Table 9 present the corresponding results. 

 

Table 8. Parameters of one unit cell in three different AM models. 

 m1, m2, m3, m4, m5 (kg) k2, k3, k4, k5 (kN/mm) ω2, ω4 (Hz) N 

SRM 0.01, 0.03, -, - 1.184, -, -, - 1000, - 10 

DRM 0.01, 0.03, 0.003, -, - 1.184, 4.737, -, - 1000, - 10 

MRM 0.01, 0.03, 0.003, 0.03, 0.03 1.184, 4.737, 2.665, 7.402 1000, 1500 10 
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FIG. 11. (a) Impact results with two MRM unit cells, four DRM unit cells, and eight 

SRM unit cells. (b) Impact force with each AM with 10 unit cells. 

 

Table 9. Maximum impact forces with all AM models. 

 Original  SRM DRM  MRM  

N —— 8 10 4 10 2 10 

Impact force (kN) 36.7 32.2 31.7 32.0 29.0 32.6 23.0 
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Figure 11 shows a considerable drop in the peak impact force at 0.24–0.67 ms 

for these three models, which implies that a high proportion of the impact stress wave 

passing through each AM is attenuated. This is due to the appearance of NEM for 

each of the SRM, DRM, and MRM AMs. Table 9 and Fig. 11(a) show that the 

maximum impact forces with eight SRM unit cells, four DRM unit cells, and two 

MRM unit cells are 32.2 kN, 32.0 kN, and 32.6 kN, respectively. Because these 

results are similar, we conclude that the MRM is more effective at attenuating the 

impact force given its weight and volume savings compared with the SRM and DRM. 

Table 9 and Fig. 11(b) show the crash results for these three AM models with 10 unit 

cells: the maximum impact forces with the SRM, DRM, and MRM models are 

31.7 kN, 29.0 kN, and 23.0 kN, respectively. This shows strongly that the MRM 

achieves the best attenuation effect among these three AM models with the same 

volume. 

 

V. CONCLUSION 

In this work, a novel MRM was proposed. Theoretical analyses showed that the 

proposed MRM has multiple band gaps and a wider frequency range associated with 

NEM compared with an SRM and a DRM. Parametric studies based on a 1D impact 

wave model showed how the number of unit cells, the spring stiffnesses, and the 

resonator masses affect the mitigation of impact force. Furthermore, the 1D impact 

wave model and a 3D crash model showed that the MRM model always produces the 

maximum attenuation of the frequency spectrum and gives the minimum peak impact 
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force with the same number of unit cells. Compared with SRM and DRM, the MRM 

with a thin and light structure can give a better mitigation effect of the impact force 

and a wider attenuation region of the frequency spectrum.  
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