
PHYSICAL REVIEW A 94, 032315 (2016)

Loss-tolerant quantum secure positioning with weak laser sources

Charles Ci Wen Lim,1,* Feihu Xu,2 George Siopsis,3 Eric Chitambar,4 Philip G. Evans,1 and Bing Qi1,3

1Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831-6418, USA

2Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139, USA

3Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
4Department of Physics and Astronomy, Southern Illinois University, Carbondale, Illinois 62901, USA

(Received 21 July 2016; published 14 September 2016)

Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party.
Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure
after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here,
we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent
quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources,
we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming
the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser
sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the
protocol is able to verify positions up to 47 dB channel loss.

DOI: 10.1103/PhysRevA.94.032315

I. INTRODUCTION

How can one verify that an untrusted party (someone with
no credentials) is indeed at a particular geographical location?
In cryptography, this problem is closely related to the task
of position verification, where a prover P has to convince
a set of remote verifiers V1,V2, . . . , that he or she is at
a certain geographic position pos∗ [1]. At the end of the
task, the verifiers either agree or disagree with the prover:
agreement means the prover gains a geographical credential,
while disagreement means the prover remains with zero
credentials. Beyond position verification, such geographical
credentials can also be used to build other cryptographic tasks
like authentication and key distribution.

In the classical setting, it has been shown that position
verification is insecure against unbounded adversaries [1]. This
impasse is mainly due to the fact that colluding adversaries can
retrieve, store, and share classical challenges with each other.
One solution is to adopt the so-called bounded-retrieval model
and limit the amount of information that an adversary can
retrieve from the public channel [1]. However, this model
is difficult to justify in practice. Drawing insights from
the bounded-retrieval model, researchers proposed quantum
position verification (QPV) as a means to achieve information-
theoretic security [2–7]. The basic idea is to replace classical
challenges with quantum challenges (quantum states) and
utilize the quantum no-cloning principle to bound the amount
of retrievable information. Unfortunately, this intuition is not
enough to guarantee unconditional security in the quantum
setting, because colluding adversaries can make use of pre-
shared entanglement to perform nonlocal computation with
one round of classical communication [3,4,6,8–11]. In light
of these impossibility results, the most obvious solution is
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to consider adversaries with no preshared entanglement, a
scenario that is known as the NPE model [6]. Assuming
perfect channel transmittance, the Bennett & Brassard 1984
(BB84) QPV protocol has been proven secure against the NPE
model [6], and more generally against adversaries with linearly
bounded entanglement [11–13].

In the case of high quantum channel loss, it turns out that
the situation is much more constrained. In particular, it has
been shown that BB84 QPV is highly vulnerable against loss-
dependent attacks and is insecure after the 3 dB loss point [14].
This weakness is in part due to the design of the verification
challenge. To see this, recall that in BB84 QPV, one verifier
V1 sends a qubit prepared in one of the four BB84 states
to the prover P , while the other verifier V2 sends the basis
information. Then, the prover is asked to extract the encoded
bit from the qubit by using the received basis information.
Now, if the quantum channel loss is sufficiently high, then the
adversaries can break the protocol with the following local
operations and classical communication (LOCC) attack: First,
the adversary nearest to V1 (called E1) measures V1’s qubit
in a randomly chosen basis and sends the measurement result
and the basis choice to the other adversary E2, who is located
next to V2. Likewise, E2 duplicates the basis information of
V2 and sends a copy to E1. Finally, the adversaries report E1’s
measurement outcome to their respective verifiers if the basis
choices of E1 and V2 are the same. Otherwise, they claim no
detection. Evidently, this attack works whenever the quantum
channel loss is greater than 1/2, thus implying a 3 dB loss
limit. More crucially, this means that BB84 QPV is not useful
in practice because most free-space quantum communication
systems have more than 3 dB loss [15].

One way to overcome the above limitation is to go beyond
the BB84 encoding scheme and encode the qubits in more
than two bases. More concretely, if the number of possible
encoding bases is N , then the above LOCC attack can only
succeed with probability 1/N . Following this intuition, it has
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been shown that multibasis QPV using weak laser sources is
secure against specific LOCC attacks up to 13 dB loss and a
0.01 quantum bit error rate [14]. Another solution is to use
quantum memories and separate the quantum transmission
phase from the (classical) basis distribution phase [5]. That
is, the quantum challenge (a collection of quantum states) is
first delivered to the prover and stored in a quantum memory.
Then, the verifiers only send the classical challenge after
the prover confirms that the quantum challenge has been
received. Thus assuming perfect classical communication, the
protocol is essentially secure against loss-dependent attacks.
However, such a protocol may require long-lived quantum
memories.

Here, we present a QPV protocol that is secure against
LOCC adversaries for any quantum channel loss. The protocol
is based on the concept of measurement-device-independent
quantum key distribution (MDI-QKD) [16,17], which uses
time-reversed entanglement swapping to check for quantum
correlations [18]. The basic idea is that if the prover is indeed
at the claimed position, then he or she should be able to
perform a local entangling measurement on the verifiers’ BB84
qubits and create quantum correlations between them (as in
entanglement swapping). However, if the prover is dishonest
and is not at the claimed position, then by definition he or
she can only collude with other dishonest provers to perform
LOCC measurements on the qubits. In this case, no quantum
correlations can be created between the verifiers. Therefore,
by comparing the measured error rate against some tolerated
error rate, the verifiers can check if the prover is at the claimed
position. Furthermore, like MDI-QKD, our QPV protocol does
not require quantum memories and can be implemented with
weak laser sources, linear optics, and standard single-photon
detectors.

For practical reasons, we consider the sequential multiround
setting where the verifiers only send out their BB84 qubits
after receiving the measurement outcome from the previous
round. In this setting, the standard relativistic constraints [see
Fig. 1] only apply to each individual round. One of the main
advantages of sequential multiround is that the adversaries
are limited to independent attacks (also known as collective
attacks in quantum cryptography), which greatly simplifies
the security analysis. However, sequential multiround setting
includes the possibility that the adversaries could use the
first round to distribute entanglement for later rounds and
break the protocol. To rule out such a possibility, the most
consistent solution, arguably, is to assume LOCC adversaries,
which by definition precludes the distribution of entanglement
at any point in the protocol. Alternatively, we can also
keep the NPE model and further assume the adversaries
lose their entanglement at the start of every round. In this
work, we consider security against LOCC adversaries and
leave the security of NPE model for future work. Here, it is
implicit that security against LOCC adversaries means security
against LOCC attacks that are compatible with the underlying
relativistic constraints (i.e., those with one round of classical
communication).

The paper is organized as follows: For pedagogical reasons,
in Sec. II we first present the details of our QPV protocol with
ideal BB84 qubit states (called Protocol I). Then, in Sec. III
we analyze the security of our qubit protocol against LOCC

Measurement

d(pos1, pos∗) d(pos∗, pos2)

2d(pos1, pos∗)

zi zi

pos1 pos2pos∗

ti

ti+1

V1 V2P

2d(pos1, pos∗)

FIG. 1. Relativistic constraints. We assume that all quantum and
classical signals travel at the speed of light and that the speed of light
is normalized to unity. In this case, the time required to send a message
from one position to another position is equal to the Euclidean
distance between them. More specifically, the Euclidean distance
between pos1 and pos∗ is defined as d(pos1,pos∗) where d(·,·) is the
distance measure in R. The protocol is based on a N -fold sequential
repetition setting, where the verifiers only send out their qubit states at
intervals of ti+1 − ti = 2d(pos1,pos∗) = 2d(pos∗,pos2). Note that,
for simplicity, we assume the prover is located at the center.

adversaries. In Sec. IV, we extend Protocol I to weak laser
sources using the decoy-state method [19] (called Protocol II)
and derive its security bound. Finally, in Sec. VI, we conclude
with a discussion on possible future work.

II. QUBIT PROTOCOL

For simplicity, we consider the one-dimensional scenario
where everyone is positioned on a straight line. In this scenario,
the verifiers are assumed to have access to a private classical
channel [20] and each verifier is equipped with a local source
of randomness and a trusted BB84 qubit preparation device.
More specifically, each qubit preparation device accepts two
bits k1, k2 as an input and generates ωk1,k2 by using

ω0,0 := I + X

2
, ω0,1 := I − X

2
,

ω1,0 := I + Y

2
, ω1,1 := I − Y

2
,

where X and Y (together with Z) are the standard Pauli
matrices. Our QPV protocol is framed in an m-fold sequential
repetition picture and is characterized by two threshold
parameters, i.e., the tolerated number of detection events, nth,
and the tolerated error rate, δth < 1/4. The protocol concludes
by outputting either {Y,N}, where Y means agreement and N
means disagreement. Below, we describe our protocol in more
detail.
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PROTOCOL I. QPV with BB84 qubits.

Protocol with ideal BB84 qubits

1. Preparation. The preparation phase is carried out i =1,2, . . . ,m

times, one after the other. In each ith run, the verifiers first use
the private classical channel to generate a random basis choice bi .
Then, they each generate a random bit (which we denote by xi and
yi , respectively) and use it to prepare a qubit and send it to the prover.
The transmission is synchronized in such a way that the qubits reach
pos∗ at time ti + τ , where τ = d(pos1,pos∗) = d(pos∗,pos2), i.e.,
see Fig. 1.

2. Measurement. The prover makes an entangling measurement
on ωbi ,xi

⊗ ω′
bi ,yi

and obtains one of the three possible outcomes:
zi ∈ {0,1,∅}. The outcome is then reported to the verifiers.

3. Quota check. The verifiers accept the measurement outcome zi

only if it arrives in time. If one of the outcomes does not arrive
in time or the verifiers receive different outcomes, they abort the
protocol and output N. If the protocol does not abort at the end
of the measurement phase, the verifiers perform a quota check:
they calculate s1,1 = |Z|, where Z = {i : zi �= ∅}, and check if
s1,1 � nth. If the check is positive, they select a random subset Z ′

of size nth from Z . Otherwise, they abort and output N.

4. Verification. Conditioned on passing the quota check, the verifiers
compute the error rate and check if

δ̂test = r1,1

s1,1
� δth,

where r1,1 = |E | and E = {i : zi �= xi ⊕ yi |zi ∈ Z ′}. If the check is
positive, they agree with the prover and output Y, otherwise they
output N.

Let us first present an optical implementation based on
single-photon sources and linear optics which shows that the
above protocol is cryptographically complete (see Sec. III for
a brief discussion and Ref. [1] for a more formal definition).
Starting from the preparation phase, the verifiers each use
their randomly generated bit values (k1,k2) to prepare one
of the four possible polarized single-photon states, {[|H 〉 +
(i)k1 (−1)k2 |V 〉]/√2}, and send it to the prover. Assuming
linear optics, the prover can implement a Bell-state measure-
ment (BSM) with 1/2 efficiency, i.e., one that is capable of
discriminating between two Bell states [21,22] (see Fig. 2). In
this case, the expected error rate and detection rate are 0 and
1/2, respectively. That is, whenever the verifiers send the same
polarized state (i.e., xi = yi), they get �+ (i.e., z = 0) with
probability 1/2, �− (i.e., z = 1) with zero probability, and
an inconclusive outcome with probability 1/2. For different
polarized states (i.e., xi �= yi), they get �+ with zero proba-
bility, �− with probability 1/2, and an inconclusive outcome
with probability 1/2. Therefore, the verifiers will always agree
with the honest prover if nth � m/2 is chosen. In this case, the
protocol is perfectly complete in the asymptotic limit.

III. SECURITY OF QUBIT PROTOCOL

From a prepare and measure perspective, the basic idea of
our protocol is to have the prover guess the XOR of the verifiers’

D1H

D1V

D2H

D2V

b,y

Linear optical BSM

PBS

BS

Detector

ωb,x ω

FIG. 2. BSM based on linear optics. A successful Bell-state
measurement corresponds to the following detection patterns: a
coincident detection in D1H and D2V , or in D1V and D2H , indicates a
projection into the Bell state |�−〉, while a click in D1H and D1V , or
in D2H and D2V , reveals a projection into the Bell state |�+〉

bit values. That is, in each round of the protocol the prover is
given a random joint state ωb,x ⊗ ω′

b,y and is supposed to guess
the underlying x ⊕ y. The main security principle of Protocol I
is that the best measurement (i.e., one that gives the highest
guessing probability) is necessarily an entangling measure-
ment, which according to our security model is only possible at
the claimed position pos∗. As we will soon see below, LOCC
adversaries (due to their limited measurement possibilities)
can only guess x ⊕ y with at most probability 3/4.

To start with, the most general strategy is to maximize
the guessing probability over all two-qubit positive-operator
valued measure (POVM) operators {�z}z=0,1,∅ constrained to
an average quantum channel loss parameter (denoted by η).
Mathematically, the maximum guessing probability is given
by

P max
guess(η) := max

{�z}z

1

2

Tr[ρ0�0 + ρ1�1]

η
, (1)

where

ρ0 := 1

4

∑
b,x,y

s.t.x ⊕ y = 0

ωb,x ⊗ ω′
b,y,

ρ1 := 1

4

∑
b,x,y

s.t.x ⊕ y = 1

ωb,x ⊗ ω′
b,y,

and Tr[ρi�∅] = 1 − η for i = 0,1. Note that for η = 1, Eq. (1)
is given by the Helstrom’s bound [23], i.e., P max

guess(1) = 1/2 +
‖ρ0 − ρ1‖1/4 = 3/4.

In the case of dishonest LOCC prover(s), the maximum
guessing probability is

P max
guess(η|LOCC) := max{�LOCC

z }z

1

2

Tr[ρ0�0 + ρ1�1]

η
, (2)

where the maximization is now taken over all two-qubit
LOCC measurements. This maximization problem is however
difficult to solve because the mathematical characterization
of LOCC measurements is highly complex (even for two-
qubit measurements with one round of communication). To
overcome this problem, we use a circuitous approach based
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on positive partial transpose (PPT) measurements which have
two advantages over LOCC measurements. First, the set of
LOCC measurements is a proper subset of PPT measurements,
which means the guessing probability taken over all PPT
measurements is necessarily an upper bound on Eq. (2),
i.e., P max

guess(η|PTT) � P max
guess(η|LOCC). Second, we may refor-

mulate the maximization of P max
guess(η|PTT) as a semidefinite

program (SDP) [24], where the optimization is taken over
all two-qubit positive operators satisfying the PPT condition
(which in turn is represented by a set of linear and positive
semidefinite conditions) [25,26]. More concretely, we may
express the maximization of ηP max

guess(η|PTT) (for a fixed η) as

maximize : 1
2 Tr[ρ0�0 + ρ1�1],

subject to : �0 + �1 + �∅ = 1,

Tr[ρi�∅] = 1 − η, i = 0,1

�
TB
k � 0, k = 0,1,∅,

where TB means the partial transpose with respect to the
measurement on the second qubit. The optimal solution to
the above SDP (primal program) is 3/4η (see Appendix A 2),
which implies the guessing probability for LOCC adversaries
is upper bounded by

P max
guess(η|LOCC) � 3

4 . (3)

Interestingly, we see that P max
guess(η|LOCC) is bounded by a

constant term that is independent of the detection efficiency
η. In fact, it can be shown that this bound is tight, i.e., there
exists a LOCC measurement that reaches the PPT bound for
any η. To show this, suppose that there are two adversaries,
E1 and E2, who are positioned next to V1 and V2, respectively.
Furthermore, suppose that they share a source of shared ran-
domness, λ, which takes values from {0,1} with probabilities
Pr[λ = 0] = 1 − η and Pr[λ = 1] = η, respectively. Now, in
each round of the protocol, if λ = 1, the adversaries measure
their respective qubits in the diagonal basis X and exchange
the measurement outcomes. Then, they compute the XOR of
their outcomes and send it to the verifiers. If λ = 0, they jointly
report no detection. By using this measurement strategy, it can
be easily verified that the guessing probability is 3/4 for any
detection efficiency. Alternatively, the upper bound can also be
reached by using the Y basis, or by using a statistical mixture
ofX andY bases with the aid of additional shared randomness.

From the above, it is clear that no coalition of LOCC
adversaries can correctly predict x ⊕ y even if η is arbitrarily
small. Coupled with the earlier example that an honest prover
(who is at the claimed position and using linear optics) is able to
correctly predict x ⊕ y for η � 1/2, it follows that a conclusive
verification of the prover’s geographical position is equivalent
to checking if the expected error rate is smaller than the mini-
mum LOCC error rate, δLOCC := 1 − P max

guess(η|LOCC) = 1/4.
Before we present the security of Protocol I, let us first

briefly explain and define what it means for the protocol
to be secure. The security of a generic QPV protocol is
generally analyzed by using two conditions; namely, the
completeness condition and the soundness condition [1]. The
completeness condition, roughly speaking, is a measure of
how often the protocol will agree with an honest prover.
Note that in the preceding section, we have already shown

(by using an ideal optical model) that Protocol I is perfectly
complete in the asymptotic limit for nth � m/2. The soundness
condition, which we will be analyzing in more detail below,
is a conservative measure of how often the protocol will agree
with a coalition of adversaries. More precisely, the soundness
condition (adapted to our security model) is defined as

Definition. (Soundness) The protocol is said to be ε-sound
if for any coalition of LOCC adversaries E1,E2,E3, . . . , at
positions pos′

1,pos′
2,pos′

3, . . . �= pos∗ and using resources
only at these positions, the verifiers agree with probability
at most ε.

The goal of the security analysis is to compute an upper
bound on the soundness error, ε, in terms of the protocol
parameters, i.e., the tolerated number of detection events, nth,
and the tolerated error rate, δth.

Result 1. (Security with qubits) Given nth and δth, the
protocol is εqubit-sound against LOCC adversaries with

εqubit � e−2nth(1/4−δth)2
. (4)

Proof sketch. The soundness of the protocol is obtained by
asking what is the maximum probability that the verifiers agree
with the adversaries. In what follows, for brevity reasons, we
will denote the event that the protocol passes the quota check
by �qc and omit the conditioning on LOCC attacks (since this
is clear in the context). First, we note that the soundness error
is upper bounded by the probability that the verifiers agree
with adversaries conditioned on �qc, i.e.,

εqubit = Pr[�qc] Pr[Y|�qc] + Pr
[
�c

qc

]
Pr

[
Y
∣∣�c

qc

]
� Pr[Y|�qc],

where we used Pr[�qc] � 1 and Pr[Y|�c
qc] = 0 to get the

inequality. Next, we note that the protocol outputs Y only if the
measured error rate δ̂test is less than or equal to the tolerated
error rate δth. This gives

εqubit � Pr[Y|�qc] = Pr[δ̂test � δth|�qc].

The above probability term can be modeled by a Bernoulli
experiment with nth trials. More precisely, for each element
in Z ′, let Ŵi be an indicator random variable taking values
in {0,1}, where 0 means no error and 1 means otherwise. Let
δ̂test = ∑nth

i=1 Ŵi/nth, then the probability of E[δ̂test] − δ̂test � β

for some β > 0 is bounded by the Hoeffding’s inequality [27]:

Pr[E[δ̂test] − δ̂test � β] � e−2nthβ
2
.

Finally, by setting E[δ̂test] = δLOCC, and β = 1/4 − δth, we
have

εqubit � Pr[δth � δ̂test|�qc] � e−2nth(1/4−δth)2
.

�
From the above, we see that the soundness error is exponen-
tially small in nth(1/4 − δth). This means that Protocol I can
be made highly reliable by choosing a large nth and a stringent
error threshold (i.e., a small δth). More importantly, the sound-
ness error is independent of the detection rate, which means
that Protocol I is secure against arbitrary quantum channel loss.
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IV. DECOY-STATE METHOD

In Protocol I we have assumed that the verifiers are able
to reliably prepare ideal qubit states. However in practice,
this assumption is unrealistic as it requires true single-
photon sources. A more practical option is to use weak
laser sources, which are good approximations of probabilistic
single-photon sources. More concretely, the output of a laser
with intensity μ = |α|2 is described by a coherent state, |α〉 =
e−μ/2 ∑

n=0 αn/
√

n!|n〉, where {|n〉}n is the photon number
(Fock) basis. Assuming that the laser is phase randomized,
the photon number of each output state follows a Poisson
distribution with its mean given by the laser’s intensity [28].
In this case, the output state is described by

ρlaser = 1

2π

∫ 2π

0
dθ ||α|eiθ 〉〈|α|eiθ | =

∞∑
n=0

μn

n!
e−μ|n〉〈n|,

where θ is the phase of the state and |n〉〈n| is the density
matrix of the n-photon state. This means that in each round,
the laser source emits a vacuum state with probability e−μ, a
single-photon state with probability μe−μ, and a multiphoton
state with probability 1 − (1 + μ)e−μ. Thus, we may think of
weak laser sources as probabilistic single-photon sources if
the laser intensity is sufficiently small.

However, in the case of QPV, the nonvanishing multiphoton
probability is a major security issue, especially when the quan-
tum channel loss is high. In particular, colluding adversaries
can post select laser pulses with three photons or more and
perform unambiguous state discrimination to determine the
verifier’s basis and bit information with success probability
�1/2 [29]. If the quantum channel loss is high enough, then it
is not hard to see that QPV is reduced to the classical version
(with classical challenges) when all n < 3 laser pulses are
blocked and returned as empty detections. Importantly, this
implies that the security of QPV with weak laser sources is not
independent of the quantum channel loss.

In the following, we will show that QPV with weak laser
sources is still highly robust against quantum channel loss,
tolerating up to 47 dB loss assuming realistic parameters. The
central idea is to use the decoy-state method [19] to estimate
the number of single-photon detections, i.e., the number of
instances in which both verifiers send single-photon states and
a successful BSM outcome is announced (denoted by s1,1),
and the number of errors in these single-photon detections
(denoted by r1,1) [30,31]. Then, by using these estimates, the
verifiers can verify the position of the prover by checking if the
estimated single-photon error rate is smaller than the tolerated
error rate (as in Protocol I).

We consider a decoy-state method with three intensities,
I := {μ1,μ2,μ3}, where μ1 > μ2 + μ3 and μ2 > μ3 � 0.
The relevant estimates are (1) a lower bound on s1,1 and
(2) an upper bound on r1,1, which we denote by random
variables ŝ lb

1,1 and r̂ub
1,1, respectively. Accordingly, this means

that there are two possible statistical errors, one due to the
estimation of s1,1 and the other due to the estimation of r1,1. The
reliability of these estimates is parametrized by a nonnegative
security parameter, ν. Below we present the protocol in more
detail.

PROTOCOL II. QPV with decoy-state method.

Protocol with decoy-state method

1. Preparation. The prepare and measurement phase is carried
out i = 1,2, . . . ,m times, one after the other. Like in the qubit
protocol, the verifiers agree on a random basis choice bi using the
private classical channel, and they each independently generate a
random bit. For the decoy-state method, they each select an intensity
value from I := {μ1,μ2,μ3} with probabilities pμ1 , pμ2 , and pμ3 ,
respectively. We write gi and hi to denote their respective intensity
choices for each ith round. Finally, the verifiers each prepare a weak
laser pulse based on their generated values and send the encoded
laser pulse to the prover.

2. Measurement. The prover makes an entangling measurement on
the laser pulses and report the outcome, zi ∈ {0,1,∅}, back to the
verifiers.

3. Quota check. Similar to the qubit protocol, the verifiers only
accept the measurement outcomes if they are consistent with the
timing constraints. If one of the outcomes does not meet the timing
constraint or the verifiers receive different outcomes, the protocol
aborts and the verifiers output N. If the protocol does not abort at the
end of the measurement phase, the verifiers perform a quota check.
Setting n

u,v
obs = |Zu,v| for u,v = μ1,μ2,μ3 and nobs = ∑

u,v n
u,v
obs, the

verifiers compute a lower bound on s1,1 (see Appendix B 2) by using

ŝ lb
1,1 =

⌊(
μ2

1 − μ2
3

)
(μ1 − μ3)γ2 − (

μ2
2 − μ2

3

)
(μ2 − μ3)γ1

(μ1 − μ3)2(μ2 − μ3)2(μ1 − μ2)

⌋
, (5)

where
γ1 := χμ1,μ1 + χμ3,μ3 − χμ1,μ3 − χμ3,μ1

+ ν
1
2 n

1
2
obs(ξ

μ1,μ1 + ξμ3,μ3 + 2ξμ1,μ3 ),

γ2 := χμ2,μ2 + χμ3,μ3 − χμ2,μ3 − χμ3,μ2

− ν
1
2 n

1
2
obs(ξ

μ2,μ2 + ξμ3,μ3 + 2ξμ2,μ3 ),

with ξu,v := exp(u + v)p−1
u p−1

v and χu,v := ξu,vn
u,v
obs for all u,v ∈

I. The verifiers proceed to the verification step if
s lb

1,1 � nth,

otherwise they abort the protocol and output N.

4. Verification. The verifiers first calculate the number of errors
(denoted by m

u,v
obs) in each Zu,v and the total number of errors,

mobs = ∑
u,v m

u,v
obs. Then, they compute an upper bound on r1,1 by

using

r̂ub
1,1 = min

{⌈
γ3

(μ2 − μ3)2

⌉
,

⌈
ŝ lb

1,1

2

⌉}
, (6)

where

γ3 := ζμ2,μ2 + ζμ3,μ3 − ζμ2,μ3 − ζμ3,μ2

+ν
1
2 m

1
2
obs(ξ

μ2,μ2 + ξμ3,μ3 + 2ξμ2,μ3 ).

with ζ u,v := ξu,vm
u,v
obs. Finally, the verifiers agree with the prover

and output Y if

δ̂
decoy
test = r̂ub

1,1

ŝ lb
1,1

� δth,

Otherwise, they output N.
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V. SECURITY ANALYSIS AND SIMULATION

A crucial step in the security analysis of Protocol I is that
the verifiers are able to directly observe s1,1 and r1,1 and check
if the protocol has sufficient statistics, i.e., s1,1 � nth, and if
the verification is correct, i.e., r1,1/s1,1 � δth. However, in the
case of weak laser sources, the direct observation of s1,1 and
r1,1 is not possible as the verifiers do not know which of the
successful BSM detections are due to single-photon emissions.
To overcome this issue, Protocol II uses the decoy-state method
as a means to construct random one-sided intervals for s1,1

and r1,1. In particular, the intervals ŝ lb
1,1 and r̂ub

1,1, as specified in
Eqs. (5) and (6), are constructed to capture s1,1 and r1,1 with
very high probability in each run of the protocol.

The key point here is that, although the decoy-state method
can be made very reliable (i.e., by choosing a large ν), there
is still a nonvanishing probability that the intervals will fail to
capture s1,1 and r1,1 in the right direction. That is, there could
be instances of the protocol in which the computed intervals
are wrong and yet the verifiers agree with the adversaries.
In terms of the security analysis, this means that there is
a strictly nonzero probability that the verifiers will agree
with the adversaries, thereby implying an additional source of
soundness errors. Here, it is important to emphasize that this
source of soundness error (which is due to the uncertainties
in the decoy-state method) is fundamentally different from the
soundness error captured by Eq. (4), which is induced by the
uncertainty in the error rate distribution. Below, we show that
the soundness error of Protocol II is the same as Protocol I
except for an additive error term that is due to the statistical
errors of the decoy-state method used.

Result 2. (Security with weak laser sources) Given
{μ1,μ2,μ3}, {pu × pv}u,v , nth, δth, and ν, the protocol is
εdecoy-sound with

εdecoy < εqubit + 2ε1 + ε2, (7)

where ε1 := 1 − (1 − e−2ν)7 and ε2 := 1 − (1 − e−2ν)4.
Proof sketch. Here, we start from a general scenario and

assume that the adversaries use s1,1 > nth with probability κ

and s1,1 � nth with probability 1 − κ . Note that this choice of
partitioning is not restrictive (since κ is not fixed) and is merely
used to facilitate the security analysis. Let the event s1,1 > nth

be denoted by �, then the soundness error can be written as

εdecoy = 1 − κ Pr[N|�] − (1 − κ) Pr[N|�c].

By conditioning on �qc, we further get

εdecoy = κ Pr[�qc|�](1 − Pr[N|�,�qc])

+ (1 − κ) Pr[�qc|�c](1 − Pr[N|�c,�qc]).

The above can be simplified by setting Pr[N|�c,�qc] = 0 and
κ , Pr[�qc|�] � 1 to get a bound that is independent of κ

(which is unknown),

εdecoy < 1 − Pr[N|�,�qc] + Pr[�qc|�c]. (8)

Now, let us focus on the event �, where there are two
parts to it. The first part consists in bounding the probability

that r̂1,1/s1,1 > δth. This is given by Eq. (4) with nth replaced
by s1,1: Pr[r̂1,1/s1,1 > δth] > 1 − ε′

qubit, where we used ε′
qubit

to remind that s1,1 has been used instead of nth. Then from
ε′

qubit < εqubit, we have

Pr[r̂1,1/s1,1 > δth] > 1 − εqubit, (9)

which is now expressed in terms of the protocol parameters.
The second part consists of bounding the reliability of the
decoy-state method. Recall that the goal is to provide a lower
bound on s1,1 and an upper bound on r̂1,1 = r1,1 (i.e., for
a given realization of r̂1,1). These bounds are given by ŝ lb

1,1

and r̂ub
1,1, which are one-sided interval estimates. Suppose

for the moment the reliability of these estimates are known,
i.e., Pr[s1,1 > ŝ lb

1,1] > 1 − ε1 and Pr[r1,1 < r̂ub
1,1|r̂1,1 = r1,1] >

1 − ε2. Then, by taking the ratio distribution, we can construct
a one-sided interval for the single-photon error rate,

Pr
[
r1,1

/
s1,1 < r̂ub

1,1

/
ŝ lb

1,1

∣∣r̂1,1 = r1,1
]

> (1 − ε1)(1 − ε2).
(10)

Operationally, this means that, given s1,1 and r1,1, the decoy-
state method will output a single-photon error rate estimate,
r̂ub

1,1/ŝ
lb
1,1, that is larger than the true single-photon error rate

r1,1/s1,1 with probability greater than (1 − ε1)(1 − ε2). Notice
that the probability statement is about the computed interval
and not about the true single-photon error rate.

Now it remains to put everything together. First, we have
that the probability of rejection conditioned on � is given by

Pr[N|�,�qc] = Pr
[
δth < r̂ub

1,1

/
ŝ lb

1,1

∣∣�,�qc
]
,

which is essentially Eq. (10) conditioned on the event
r̂1,1 > �δths1,1�. More precisely, we have Pr[N|�,�qc] =
Pr[r̂1,1 > �δths1,1�|�] Pr[r1,1/s1,1 < r̂ub

1,1/ŝ
lb
1,1|r̂1,1 = r1,1],

which together with Eq. (9) implies

Pr[N|�,�qc] > (1 − ε1)(1 − ε2)(1 − εqubit).

Plugging this in Eq. (8), we thus get

εdecoy < 1 − (1 − ε1)(1 − ε2) + εqubit + Pr[�qc|�c]

< 1 − (1 − ε1)(1 − ε2) + εqubit + ε1

< 2ε1 + ε2 + εqubit,

where in the second inequality we used Pr[�qc|�c] � ε1.
Finally, in Appendix B 2 we show that the statistical errors

ε1 and ε2 can be parametrized using a fixed security constant,
ν, giving

ε1 = 1 − (1 − e−2ν)7, ε2 = 1 − (1 − e−2ν)4,

which concludes our proof sketch. �
A way to evaluate the feasibility of our protocol is to look for

the loss point (in dB) at which the error rate, r̂ub
1,1/ŝ

lb
1,1, is greater

than 1/4. To this end, we consider a symmetric photonic
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FIG. 3. The upper bound of the estimated single-photon error rate
versus overall loss between Alice and Bob. The simulation assumes
a baseline QBER of 0.1%. The the detectors are assumed to have an
efficiency of 64% and a dark count rate of 2.5 × 10−6. The starting
cutoff point is about 6.8 dB, which is the total loss in the BSM. The
numerical results are obtained using N = 10x with x = 10,11,12,13
(from left to right).

implementation where the prover is positioned at the center
between the verifiers, i.e., see Fig. 1. The implementation
is based on polarized photons, linear optical elements and
threshold detectors. Following standard channel error models
for photonic quantum communication (e.g., see Ref. [30]),
we assume two sources of error; namely, polarization mis-
alignment errors and background noise. In this case, the
quantum bit error rate (QBER) is made up of two components:
a baseline error rate (polarization misalignment errors) and
a loss-dependent error rate (due to detector dark counts).
Evidently in our consideration, the limit on the amount of
tolerable loss is largely determined by the detector dark count
rate. For the simulation, we borrow experimental parameters
from a recent MDI-QKD experiment [32]: the baseline error
rate is fixed to 0.1% and the detectors (with 64% efficiency)
are assumed to have a dark count rate of 2.5 × 10−6. Also,
the security parameter of the decoy-state method is fixed to
ν = 10, giving an overall error probability of ∼10−8. In Fig. 3,
we plot r̂ub

1,1/ŝ
lb
1,1 for N = 10x with x = 10,11,12,13 against

the overall quantum channel loss (dB). From the simulation,
we see that our protocol is able to tolerate up to about 47 dB
loss with weak laser sources.

VI. CONCLUSION AND OUTLOOK

In the above, we have presented a time-reversed en-
tanglement swapping QPV protocol that is highly robust
against detection losses. By using a proof technique from
Refs. [25,26], we first showed that Protocol I (assuming ideal

BB84 qubits) is secure against arbitrary local operations and
classical communication (LOCC) attacks for any quantum
channel loss. In particular, the soundness error of the protocol
is shown to be independent of the overall detection loss
and is exponentially small in the number of rounds with
conclusive measurement outcomes. This is in contrast to
the widely studied BB84 QPV protocol, which is insecure
when the quantum channel loss is �1/2 assuming LOCC
attacks [14]. In Sec. IV, we extended Protocol I to weak
laser sources using a practical decoy-state method with
three intensities (denoted by Protocol II). We found that the
soundness error of Protocol II only degrades by an additive
error term that is dependent on the reliability of the underlying
decoy-state method. In addition, we performed numerical
simulations by using realistic experimental conditions and
found that secure position verification is possible up to about
47 dB loss.

Evidently, our proposed protocol is not the complete solu-
tion to practical QPV. In particular, what we have addressed
here is only the overall detection loss, assuming the verifiers
are able to accurately prepare their quantum states. To this
end, it would be useful to investigate the impact of state-
preparation errors, especially considering the fact that such
errors are known to severely degrade the security performance
of quantum key distribution [33]. One possible solution is
to adopt the notion of loss-tolerant quantum cryptography
[34] and employ mismatched basis statistics to guarantee the
loss-tolerant property of our protocol in the presence of state-
preparation errors. Another interesting line of research would
be to look at the semi-device-independent security of our
protocol assuming that the dimension of the verifier’s quantum
challenges (states) is fixed. Several results have been obtained
in this direction for measurement-device-independent QKD
[35,36], to which suggest that similar conclusions could hold
for our QPV protocol.
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APPENDIX A: DETAILS OF SEMIDEFINITE PROGRAM

1. Semidefinite program: preliminaries

In order for us to provide a more precise description of
our semidefinite programs, we would need to introduce a few
mathematical notations; some of which may be different from
those used in the main text. We let V1 and V2 complex Hilbert
spaces be denoted by A and B, respectively. The set of linear
operators, Hermitian operators, and positive semidefinite
operators acting on the composite Hilbert space are written
as L(A ⊗ B), Herm(A ⊗ B), and Pos(A ⊗ B), respectively.
Furthermore, we write Q � 0 to indicate that Q is positive
semidefinite. The set of density operators corresponding to the
verifiers’ quantum systems is defined as D(A ⊗ B) := {ρ ∈
Pos(A ⊗ B) : Tr[ρ] = 1}. Additionally, we would require the
partial transpose operation, TB = IL(A) ⊗ T , which performs
the transpose operation T on V2’s Hilbert space. Accordingly,
the set of positive partial transpose (PPT) operators is defined
as PPT(A : B) := {Q : TB(Q) � 0,Q ∈ Pos(A ⊗ B)}. Also,
we denote a diagonal matrix by Q = diag[λ1,λ2,λ3,λ4].

2. Optimal guessing probabilities

As mentioned in the main text, the bound for PPT
measurements can be analytically solved by using convex
optimization techniques; namely, semidefinite programming
[24]. More specifically, the idea is to find feasible analytical
solutions for the primal and dual programs which provide
lower and upper bounds on the optimal value (i.e., the weak
duality principle). If the solutions lead to values that coincide,
then we say that the optimal solution for the semidefinite
program is found. That is, by the strong duality principle,
the duality gap is zero. In the following, we will show that the
considered semidefinite programs have zero duality gaps.

Result 3 (Optimal guessing probability for PPT measure-
ments). The maximum probability of discriminating ρ0 and
ρ1 using measurements {�0,�1,�∅} ∈ PPT(A ⊗ B) for any
conclusive rate η ∈ (0,1] is

P max
guess(η|PPT) = 3

4 . (A1)

Proof sketch. The primal program for PPT measurements
is given as

Primal program (PPT)

maximize : 1
2 Tr[ρ0�0 + ρ1�1],

subject to : �0 + �1 + �∅ = 1A⊗B,

Tr[ρi�∅] = 1 − η, i = 0,1,

�k ∈ PPT(A : B), k = 0,1,∅,

and the corresponding dual program is

Dual program (PPT)

minimize : Tr[Y ] − (1 − η)γ,

subject to : 2[Y − TB(Qi)] − ρi � 0, i = 0,1,

4[Y − TB(Q2)] − γ1L(A⊗B) � 0,

Y ∈ Herm(A ⊗ B),

Qi ∈ Pos(A ⊗ B), i = 0,1,2,

γ ∈ R.

To prove Eq. (A1), we need to construct feasible solutions
for the primal and dual programs and show that their
optimization values are identical. For the primal program, a
feasible solution is

�̃0 = 1

2

⎡
⎢⎣

η 0 0 0
0 η η 0
0 η η 0
0 0 0 η

⎤
⎥⎦, �̃0 = 1

2

⎡
⎢⎣

η 0 0 0
0 η −η 0
0 −η η 0
0 0 0 η

⎤
⎥⎦,

�̃∅ = diag[1 − η,1 − η,1 − η,1 − η].

Using this solution, we get ηP max
guess(η|PPT) � 3η/4. For the

dual program, a feasible solution is

Ỹ = 3

16
1L(A⊗B), γ̃ = 3

4
,

Q0 = 1

16

⎡
⎢⎣

1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎤
⎥⎦, Q1 = 1

16

⎡
⎢⎣

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤
⎥⎦,

Q2 = 0L(A⊗B),

which gives ηP max
guess(η|PPT) � 3η/4. Putting everything to-

gether, the obtained optimal values give Eq. (A1). �

APPENDIX B: DETAILS OF DECOY-STATE METHOD

Here, we provide the details for the bounds from the decoy-
state analysis presented in the main text. The analysis is mainly
based on Ref. [31].

1. Decoy-state method: preliminaries

Our decoy-state method consists of both verifiers randomly
setting the intensities of their respective laser pulses to
one of the three intensity levels, I = {μ1,μ2,μ3} where
μ1 > μ2 + μ3 and μ2 > μ3 � 0. To analyze the finite-size
effects of the decoy-state method, we consider an equivalent
protocol, where V1 (V2) has the ability to send k-photon
(l-photon) states, and they only decide on the choice of
the average photon-number after the prover announces a
successful measurement. In what follows, we will first
introduce basic notations for the decoy-state analysis and then
provide the relevant bounds for s1,1 and r1,1.

Let sk,l be the number of successful measurements an-
nounced by the prover given that V1 has sent k-photon states
and V2 has sent m-photon states. In this case, it is not hard
to see that

∑∞
k,l=0 sk,l = ∑

u,v nu,v = n is the total number of
detections, where nu,v is the number of detections assigned to
intensity settings u and v. Furthermore, we expect the size of
nu,v to be

ñu,v =
∞∑

k,l=0

pu,v|k,lsk,l, (B1)

where pu,v|k,l is the conditional probability of choosing the
intensity settings u and v given that V1 sent a k-photon state
and V2 sent a l-photon state. More formally, the difference
between the expected value (ñu,v) and the observed value (nu,v)
can be quantified by using the Hoeffding’s inequality [27]:

|ñu,v − nu,v| < �(n,ε1), (B2)
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where �(n,ε1) := √
n/2 ln(1/ε1). The same statistical in-

equality can also be made for the expected number of errors
and the observed number of errors for any pair of intensity
settings. Let rk,l be the number of errors associated with sk,l ,
m = ∑∞

k,l=0 rk,l be the total number of errors, and

m̃u,v =
∞∑

k,l=0

pu,v|k,lrk,l, (B3)

be the expected number of errors assigned to intensity settings
u and v. Then, the difference between m̃u,v and mu,v is given
by

|m̃u,v − mu,v| < �(m,ε2), (B4)

which holds with probability at least 1 − 2ε2.
A central ingredient in Eqs. (B1) and (B3) is the probability

of choosing intensities u,v given k,l photons (i.e., pu,v|k,l),
which is not directly accessible in Protocol II. To estimate this
quantity, we note that with Bayes’ rule, for all u and v, we
have

pu,v|k,l = pu,v

τk,l

pk,l|u,v = pu,v

τk,l

e−(u+v)ukvl

k!l!
, (B5)

where pu,v denotes the probability that V1 chooses intensity u

and V2 chooses intensity v, and

τk,l :=
∑
u,v

pu,ve
−(u+v) u

kvl

k!l!
(B6)

is the probability that V1 prepares a k-photon state and V2

prepares a l-photon state.

2. Estimation of s1,1 and r1,1

Next, we discuss how to calculate s1,1. This is done
by exploiting the structure of Eq. (B1) and following the
approach proposed by Refs. [30,31]. The estimation method is
mainly based on Gaussian elimination. For brevity, let ξu,v :=
exp(u + v)p−1

u p−1
v for all u,v ∈ I, then we have s1,1 � s lb

1,1

where

s lb
1,1 =

⌊(
μ2

1 − μ2
3

)
(μ1 − μ3)γ ′

2 − (
μ2

2 − μ2
3

)
(μ2 − μ3)γ ′

1

(μ1 − μ3)2(μ2 − μ3)2(μ1 − μ2)

⌋
,

(B7)

and

γ ′
1 := ξμ1,μ1 ñμ1,μ1 + ξμ3,μ3 ñμ3,μ3

− ξμ1,μ3 ñμ1,μ3 − ξμ3,μ1 ñμ3,μ1 , (B8)
γ ′

2 := ξμ2,μ2 ñμ2,μ2 + ξμ3,μ3 ñμ3,μ3

− ξμ2,μ3 ñμ2,μ3 − ξμ3,μ2 ñμ3,μ2 . (B9)

An upper bound on the number of errors associated with the
single-photon detection events is given in Refs. [30,31]:

rub
1,1 = min

{⌈
γ ′

3

(μ2 − μ3)2

⌉
,

⌈
s lb

1,1

2

⌉}
, (B10)

where

γ ′
3 := ξμ2,μ2m̃μ2,μ2 + ξμ3,μ3m̃μ3,μ3

− ξμ2,μ3m̃μ2,μ3 − ξμ3,μ2m̃μ3,μ2 . (B11)

At this point, Eqs. (B7) and (B10) are given in terms of ñu,v

and m̃u,v , which are expected values. To rewrite the equations
in terms of the observed values, we use Eqs. (B2) and (B4) to
get

nu,v − √
νn < ñu,v < nu,v + √

νn, (B12)

mu,v − √
νm < m̃u,v < mu,v + √

νm, (B13)

for all u,v ∈ I. Thus for a given security parameter ν > 0, the
error probability for these inequalities is exp(−2ν). In other
words, each of the above inequalities holds with probability at
least 1 − exp(−2ν). Note that Eqs. (B7) and (B10) use seven
estimators and four estimators, respectively.

Finally, by applying Eqs. (B12) and (B13) to Eqs. (B7) and
(B10), we arrive at the main equations for Protocol II, Eqs. (5)
and (6).
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