6,313 research outputs found
Randomized Observation Periods for the Compound Poisson Risk Model: Dividends
In the framework of the classical compound Poisson process in collective risk theory, we study a modification of the horizontal dividend barrier strategy by introducing random observation times at which dividends can be paid and ruin can be observed. This model contains both the continuous-time and the discrete-time risk model as a limit and represents a certain type of bridge between them which still enables the explicit calculation of moments of total discounted dividend payments until ruin. Numerical illustrations for several sets of parameters are given and the effect of random observation times on the performance of the dividend strategy is studie
The Patient Process and Affordable Care Act of 2010: Implementation Challenges in the Context of Federalism
Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine
Reactive oxygen species (ROS) participate in numerous cell responses, including proliferation, DNA damage, and cell death. Based on these disparate activities, both promotion and inhibition of ROS have been proposed for cancer therapy. However, how the ROS response is determined is not clear. We examined the activities of ROS in a model of Apc deletion, where loss of the Wnt target gene Myc both rescues APC loss and prevents ROS accumulation. Following APC loss, Myc has been shown to up-regulate RAC1 to promote proliferative ROS through NADPH oxidase (NOX). However, APC loss also increased the expression of TIGAR, which functions to limit ROS. To explore this paradox, we used three-dimensional (3D) cultures and in vivo models to show that deletion of TIGAR increased ROS damage and inhibited proliferation. These responses were suppressed by limiting damaging ROS but enhanced by lowering proproliferative NOX-derived ROS. Despite having opposing effects on ROS levels, loss of TIGAR and RAC1 cooperated to suppress intestinal proliferation following APC loss. Our results indicate that the pro- and anti-proliferative effects of ROS can be independently modulated in the same cell, with two key targets in the Wnt pathway functioning to integrate the different ROS signals for optimal cell proliferation
Optical Polarization and Spectral Variability in the M87 Jet
During the last decade, M87's jet has been the site of an extraordinary
variability event, with one knot (HST-1) increasing by over a factor 100 in
brightness. Variability was also seen on timescales of months in the nuclear
flux. Here we discuss the optical-UV polarization and spectral variability of
these components, which show vastly different behavior. HST-1 shows a highly
significant correlation between flux and polarization, with P increasing from
at minimum to >40% at maximum, while the orientation of its electric
vector stayed constant. HST-1's optical-UV spectrum is very hard
(, ), and displays "hard lags"
during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at
later epochs. We interpret the behavior of HST-1 as enhanced particle
acceleration in a shock, with cooling from both particle aging and the
relaxation of the compression. We set 2 upper limits of
parsecs and 1.02 on the size and advance speed of the flaring region. The
slight deviation of the electric vector orientation from the jet PA, makes it
likely that on smaller scales the flaring region has either a double or twisted
structure. By contrast, the nucleus displays much more rapid variability, with
a highly variable electric vector orientation and 'looping' in the
plane. The nucleus has a much steeper spectrum () but
does not show UV-optical spectral variability. Its behavior can be interpreted
as either a helical distortion to a steady jet or a shock propagating through a
helical jet.Comment: 14 pages, 7 figures, ApJ, in pres
Perturbative QCD Fragmentation Functions for and Production
The dominant production mechanism for bound states in high
energy processes is the production of a high energy or quark,
followed by its fragmentation into the state. We calculate the
fragmentation functions for the production of the S-wave states and
to leading order in the QCD coupling constant. The fragmentation
probabilities for and
are approximately and , while those
for and are smaller by almost two
orders of magnitude.Comment: Latex, 12 pages, 3 figures available upon request, NUHEP-TH-93-
- …
