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Opposing ettects of TIGAR- and RAC1-
derived ROS on Wnt-driven proliteration
in the mouse intestine
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Reactive oxygen species (ROS) participate in numerous cell responses, including proliferation, DNA damage,

and cell death. Based on these disparate activities, both promotion and inhibition of ROS have been proposed for
cancer therapy. However, how the ROS response is determined is not clear. We examined the activities of ROS in a
model of Apc deletion, where loss of the Wnt target gene Myc both rescues APC loss and prevents ROS accumu-
lation. Following APC loss, Myc has been shown to up-regulate RAC1 to promote proliferative ROS through
NADPH oxidase (NOX). However, APC loss also increased the expression of TIGAR, which functions to limit ROS.
To explore this paradox, we used three-dimensional (3D) cultures and in vivo models to show that deletion of
TIGAR increased ROS damage and inhibited proliferation. These responses were suppressed by limiting damaging

ROS but enhanced by lowering proproliferative NOX-derived ROS. Despite having opposing effects on ROS
levels, loss of TIGAR and RACI1 cooperated to suppress intestinal proliferation following APC loss. Our results
indicate that the pro- and anti-proliferative effects of ROS can be independently modulated in the same cell,
with two key targets in the Wnt pathway functioning to integrate the different ROS signals for optimal cell

proliferation.
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Many cellular processes lead to the generation of reactive
oxygen species (ROS), which can take different forms and
occupy different cellular locations. The major sources of
ROS production are mitochondrial oxidative respiration,
the activity of NADPH oxidase (NOX) enzymes, and ni-
tric oxide synthase (NOS). The generation of ROS can be
an important component of signaling for cell proliferation
as well as other responses such as angiogenesis, immortal-
ization, metastasis, and drug resistance. However, ROS
can also be damaging to the cell, resulting in DNA dam-
age, lipid oxidation, and, ultimately, cell death. In this
latter context, ROS is cytotoxic. Tight regulation of oxida-
tive stress is therefore important to maintain cell viabili-
ty, and numerous antioxidant activities exist to balance
these different activities of ROS for maximal survival
(Sabharwal and Schumacker 2014; Schieber and Chandel
2014). This requirement to balance ROS activity is par-
ticularly evident in cancer cells, where the oncogenic
process drives increased ROS accumulation. While the
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pro-oncogenic activities of ROS signaling can contribute
to abnormal proliferation, this must be balanced by anti-
oxidant functions to ensure cell survival. Indeed, cancer
cells frequently show enhanced expression of antioxidant
defense to counteract the potentially lethal increases in
ROS that accompany malignant development (D’Au-
treaux and Toledano 2007; Trachootham et al. 2009; Gor-
rini et al. 2013; Sullivan and Chandel 2014b). Given the
complexity of the response to ROS signaling, it is not sur-
prising that predicting the effect of ROS modulation is dif-
ficult. The use of antioxidants to limit the damaging
effects of ROS has been suggested to promote longevity
or, by preventing genotoxic damage and oncogenic signal-
ing, limit cancer development. However, in practice, it
has been extremely difficult to generate compelling evi-
dence to support either of these proposals, leading to al-
ternative models in which limitation of ROS may be
counterproductive to therapy by helping cancer cells to
survive (Dickinson and Chang 2011). The fact that many
cancer cells exist in a high ROS state suggests that they
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will be selectively sensitive to further increases in oxida-
tive stress or inhibition of the attendant antioxidant de-
fense (DeNicola et al. 2011; Harris et al. 2015). In this
context, it is worth noting that many standard forms of
cancer therapy, such as irradiation (IR) and chemotherapy,
depend on ROS generation (Myers et al. 1977; Powell and
McMillan 1990).

Most models of how ROS can exert these very different
effects on the cell focus primarily on the overall level of
ROS, proposing that low ROS levels promote beneficial re-
sponses, such as proliferation and survival, while high
ROS levels lead to damage and cell death. However, it is
also possible that different ROS-generating systems lead
to different responses; for example, mitochondrial ROS
may be more likely to promote damage and death (Giulivi
et al. 1995; Heales et al. 1999; Adam-Vizi and Chinopou-
los 2006; Abramov et al. 2007), while membrane-generat-
ed ROS is more often described as contributing to
signaling for cell proliferation (Vilhardt and van Deurs
2004; Choi et al. 2005; Li et al. 2006; Ushio-Fukai 2006).
These distinctions are clearly not absolute; mitochondrial
ROS has also been shown to contribute to proliferation,
tumorigenicity, migration, and metastasis (Lee et al.
2002; Kwon et al. 2004; Weinberg et al. 2010; Porporato
et al. 2014), while NOX-generated ROS at the membrane
can induce cell death through ferroptosis and necrosis
(Kim et al. 2007; Dixon et al. 2012). Taken together, it
seems likely that the cell response to ROS reflects a com-
plex integration of ROS type, location, and level. These
are important factors to consider when developing a ther-
apeutic strategy that involves the modulation of redox
levels, where it will be critical to reconcile the beneficial
and deleterious effects of ROS in cancer development. To
explore more fully whether different responses to ROS
simply reflect ROS levels or whether the responses are
more complex, we explored the effects of combining al-
terations in two previously described ROS-modulating
pathways. The first focuses on TIGAR, a protein that
can control glucose metabolism and helps to maintain
NADPH levels to regenerate glutathione (GSH), a key in-
tracellular antioxidant. Loss of TIGAR expression leads
to increased ROS, and while this is not obviously detri-
mental to normal growth and development, in most mod-
el systems, this results in defects in both proliferation
and survival following stress (Bensaad et al. 2006, 2009;
Lui et al. 2011; Wanka et al. 2012; Yin et al. 2012). In
the mouse intestine, loss of TIGAR can decrease the pro-
liferation that accompanies tissue regeneration after
genotoxic stress and limit the hyperproliferation seen in
Wnt-driven adenoma through the failure to limit ROS
(Cheung et al. 2013). RAC], in contrast, is a component
of the NOX signaling complex that uses NADPH to signal
proliferation. Similar to loss of TIGAR, loss of RACI also
leads to defects in proliferation, but, in this case, the effect
is a reflection of decreased ROS levels (Myant et al. 2013).
This raises a paradox in that both decreased and increased
ROS in the intestine can lead to a decrease in proliferation.
Here we found that both TIGAR and RACI expression
are induced under conditions of intestinal proliferation
in response to abnormal Wnt signaling following Apc

Opposing effects of ROS in proliferation

deletion. We therefore exploited the observation that the
activation of Wnt results in the control of both signaling
ROS and deleterious ROS, using this opportunity to mod-
ulate the endogenous amounts of these different types
of ROS by manipulating these two pathways in a three-
dimensional (3D) organoid culture system as well as ge-
netically in vivo. We demonstrated that differentially
modulating the different types of ROS can affect the opti-
mal growth response.

Results

TIGAR supports intestinal proliferation through
cell-autonomous mechanisms

Our previous studies found that, although whole-body
constitutive deletion of TIGAR did not prevent normal
growth and development, TIGAR-null mice showed de-
fects in intestinal regeneration and decreased tumor
development in a model of intestinal adenoma develop-
ment following Apc deletion (Cheung et al. 2013). To
determine whether the contribution of TIGAR to intesti-
nal regeneration following damage reflected a require-
ment for TIGAR in the intestinal cells themselves, we
generated a conditional TIGAR™" mouse and crossed
these animals with Ahcre (Ahcre* TIGAR™) to express
cre in the intestine after induction by the cytochrome
P450 inducer p-napthoflavone (Ireland et al. 2004). The
loss of TIGAR staining by immunohistochemistry con-
firmed successful deletion (Fig. 1A). As seen in the
TIGAR™/~ mice (Cheung et al. 2013), deletion of TIGAR
in the absence of stress did not cause an overt phenotype,
and both wild-type and TIGAR-deleted intestines showed
similar rates of proliferation, as measured by Ki67 staining
(Fig. 1A). However, following genotoxic damage (cisplatin
orIR) (Fig. 1B-D; Supplemental Fig. 1A}, Ahcre* TIGAR™
mice showed a clear defect in regeneration compared with
the control Ahcre* TIGAR*/* mice, a phenotype that was
manifested by both the size of the crypts and proliferation
measured by Ki67 staining (Fig. 1C,D). Using malondial-
dehyde (MDA) staining to indicate the accumulation of
damage by ROS, we found that TIGAR-deficient intes-
tines sustained increased ROS damage following cisplat-
in- or IR-induced damage (Fig. 1E), correlating with a
defect in regeneration after genotoxic damage.

Our previous work showed that systemic loss of TIGAR
decreased intestinal adenoma development following
APC loss and enhanced the survival of these mice
(Cheung et al. 2013). Using Apc™™/* mice, which develop
adenomas in response to a reduced expression of APC
(Moser et al. 1990), we found that loss of TIGAR specifi-
cally in intestinal cells also resulted in a significant in-
crease in ROS damage, as measured by MDA staining,
and reduction in tumor burden and tumor proliferation,
as measured by Ki67 staining (Fig. 1F,G; Supplemental
Fig. 1B), although, in this model, no significant survival
advantage of loss of TIGAR could be detected. These re-
sults support a cell-autonomous function for TIGAR in
limiting ROS and supporting proliferation in the small in-
testine after injury or in adenomas.
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TIGAR expression is regulated by Wnt signaling
through Myc

Since TIGAR plays an important role in regulating
and supporting proliferation of Apc-deficient intestinal
cells, we examined the effect of activation of Wnt signaling
on TIGAR expression. B-Napthoflavone treatment of
Ahcre*Apc" mice resulted in loss of APC in both the in-
testine and liver (Sansom et al. 2004) and was accompanied
by a clear increase in expression of the Wnt target gene
Axin2 (Fig. 2C; Supplemental Fig. 2A). APC loss also led
to an increase in TIGAR expression in both organs (Fig.
2A-C). Although we were unable to consistently recapitu-
late this Wnt-induced increase in TIGAR expression in
two-dimensional (2D) tissue culture systems, a similar in-
crease in TIGAR expression at both the protein and mRNA
level was detected in crypt organoid cultures from Apc™™/
* mice (Supplemental Fig. 2B,C) and following acute Apc
deletion in Ahcre*Apc™ organoid cultures (Fig. 2D). In-
terestingly, while an increase in the known Wnt target
gene Ccnd1 (cycline D1) and Myc was detected in each
of these crypt cultures in response to APC loss, there
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Figure 1. TIGAR supports intestinal proliferation
through cell-autonomous mechanisms. (A) H&E
staining (top), TIGAR staining (middle), and Ki67
staining (bottom) of small intestines from Ahcre*
TIGAR** and Ahcre*TIGAR™" animals 3 d after in-
duction of cre by -napthoflavone. (B) Small intestines
from induced Ahcre* TIGAR** and Ahcre* TIGAR™!
animals 3 d after CDDP (cisplatin; 10 mg/kg) treat-
ment. (Top) H&E staining. (Bottom) Ki67 staining.
(C) Quantification of Ki67" cells per intestinal crypt
of induced Ahcre*TIGAR** and Ahcre*TIGAR™"
3 d after CDDP or 10 Gy of y-IR. (*) P < 0.05 compared
with Ahcre* TIGAR**. Control Ahcre*TIGAR**, n =
11; control Ahcre* TIGAR™? n = 8; cisplatin Ahcre*
TIGAR™*, n = 6; cisplatin Ahcre* TIGAR™ n=7; IR
Ahcre*TIGAR**, n=4; cisplatin Ahcre*TIGAR™"
n = 6. (D) Quantification of number of crypts per milli-
meter of intestine of induced Ahcre*TIGAR*'* and
Ahcre*TIGAR™ 3 d after CDDP (cisplatin) or 10 Gy
of y-IR. (*) P<0.05 compared with Ahcre* TIGAR".
Control Ahcre*TIGAR'", n=3; control AhcreTI-
GAR™1 n = 3; cisplatin Ahcre* TIGAR**, n=6; cis-
platin Ahcre* TIGAR™ n=7, IR Ahcre*TIGARY,
n =4 cisplatin Ahcre* TIGAR™ 1 = 6.(E) MDA stain-
ing of small intestines from induced Ahcre* TIGAR*/*
and Ahcre*TIGAR™ animals after CDDP or y-IR. (F)
H&E staining (top), Ki67 staining (middle), and
MDA staining (bottom) of the small intestines
from induced  Ahcre*Apc™P*TIGAR'*  and
Ahcre* Apc™* TIGAR™ at 80 d of age. (G) Quan-
tification of total tumor size and average tumor
size of induced Ahcre*Apc™™*TIGAR** and
Ahcre* Apc™*TIGAR™ at 80 d of age. (*) P<0.05
compared with control. Control (CTR), n=11; knock-
out (KOJ, n=19. Bars, 100 um.
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was no clear induction of p53 or the p53-dependent target
gene Cdknla (p21) (Fig. 2D,E). These results are consis-
tent with previous reports (Reed et al. 2008) and our recent
observations that the expression of TIGAR in the mouse
intestine is not dependent on p53 (Lee et al. 2015).
Induction of Wnt signaling can promote transcriptional
activation through several mechanisms. Loss of APC re-
sults in the stabilization and nuclear translocation of f-
catenin, which interacts with TCF to directly control
gene expression (MacDonald et al. 2009). A key transcrip-
tional target of B-catenin/TCF is Myc, which has been
shown to mediate many of the cellular responses to
Wnt signaling (Sansom et al. 2007). To determine wheth-
er Myc is important for the induction of TIGAR expres-
sion, we examined the effect of simultaneous deletion
of Apc and Myc on TIGAR expression in vivo (Fig. 2F).
As seen previously (Sansom et al. 2007), loss of Myc sig-
nificantly decreased the enhanced crypt proliferation
seen in response to Apc deletion. As shown previously
(Sansom et al. 2007), the absence of Myc did not prevent
the activation of Wnt, as shown by the accumulation
of nuclear B-catenin in these smaller crypts. However,
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deletion of Myc led to a failure to induce both cyclin D1—
a direct Myc target gene (Supplemental Fig. 2D)—and
TIGAR in Apc-deleted crypts (Fig. 2F). Taken together,
the results suggest that the induction of TIGAR is not a
direct response to B-catenin/TCF activity but is a re-
sponse to the activation of Myc. Further support for a
role of Myc in the regulation of TIGAR expression was
seen in transgenic mice expressing deregulated Myc. In
the Ep-Myc lymphoma model, transgenic Myc is ex-
pressed from the IgH enhancer, leading to deregulated
Myc expression in B cells and the development of lym-
phomas within the first 5 mo of age (Adams et al. 1985).
Thymus from tumor-bearing mice showed clear evidence
of TIGAR overexpression compared with normal tissue
from wild-type mice (Fig. 2G). However, no evidence of
increased TIGAR levels was seen in the preneoplastic tis-
sue of these mice, suggesting that Myc-mediated expres-
sion of TIGAR may be indirect or require additional
signals. A lung cancer model driven by Adeno-cre inhala-
tion in an LSL-KRas“!'?P LSL-Hu-Myc mouse (Murphy
et al. 2008) showed evidence of premalignant lesions
within 6 wk of KRas and Myc activation. Substantial
up-regulation of TIGAR was seen in these lesions com-
pared with the surrounding normal lung tissue (Fig. 2H),

and Apc™" crypts. () P<0.05 compared with wild
type. n=3. (F) TIGAR staining (left) and B-catenin
staining (right) of intestines from wild-type,
Ahcre*Apc™ and Ahcre* Apc My 3 d after cre
induction. (G) Western blot analysis of tissues from
wild-type thymus, preneoplastic thymus, and thymic
lymphoma from Ep-Myc animals. (H) TIGAR staining
of lung tissues from inhaled Adeno-cre; LSL-MycTG;
LSL-KRas“!2P animals. Bars, 100 pm.

again suggesting that Myc deregulation contributes to
the up-regulation of TIGAR expression.

TIGAR induction is ROS-dependent

Previous studies have shown that both inhibition of APC
and treatment with IR increased ROS in the mouse intes-
tine (Cheung et al. 2013; Myant et al. 2013). Importantly,
the induction of ROS (as measured by MDA staining) in
the intestine following Apc deletion was dependent on
Myc (Fig. 3A). We therefore considered that the activation
of TIGAR may in part reflect increased levels of ROS. To
test this directly, we examined the effect of ROS-inducing
treatments on TIGAR expression in the normal and tumor
organoid cultures. Induction of oxidative stress following
treatment of the crypts with hydrogen peroxide (H,O,)
or rotenone led to an increase in the expression of the
known ROS-responsive gene heme oxygenase-1 (HO-1)
and TIGAR, although expression of the Myc target cyclin
D1 was not affected (Fig. 3B,C). The activation of TIGAR
expression was not accompanied by an increase in the p53
target p21 (Fig. 3B), consistent with our recent report that
TIGAR expression is not dependent on p53 activity in the
mouse intestine (Lee et al. 2015). Conversely, treatment of
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Figure 3. TIGAR expressionisregulated by ROS. (A) MDA stain-
ing of small intestines from wild-type (WT), Ahcre*Apc™”, and
Ahcre* ApcMyc" 3 d after creinduction. (B) mRNA expression
of TIGAR, cyclin D1, HO-1, and p21 from normal wild-type intes-
tinal crypt cultures after 24 h of the indicated ROS treatments. (*) P
<0.05 compared with untreated. n=3. (C) mRNA expression of
TIGAR, cyclin D1, and HO-1 from Apc™™* organoid cultures af-
ter 24 h of the indicated ROS treatments. (*) P <0.05 compared
with untreated. n=3. (D) mRNA expression of TIGAR, cyclin
D1, and HO-1 from Apc™™/* organoid cultures after 24 h of the in-
dicated anti-ROS treatments. Bars, 100 pm.

the organoids with antioxidants such as allopurinol (a
xanthine oxidase inhibitor), L-NAME (L-NG-nitroargi-
nine methyl ester; an NOS inhibitor) resulted in decreased
TIGAR expression (Fig. 3D). These results indicate that
TIGAR expression can be regulated by the levels of oxida-
tive stress in the cell.

TIGAR supports intestinal cell growth by limiting
damaging ROS

Taken together, our data suggest that TIGAR is induced in
response to ROS, and previous work has shown that
TIGAR can function to provide antioxidant defense (Ben-
saad et al. 2006, 2009; Lui et al. 2011; Wanka et al. 2012;
Yin et al. 2012; Cheung et al. 2013). Normal and tumor in-
testinal crypts derived from constitutive TIGAR-null
mice grew less well in 3D cultures, and these could be res-
cued with antioxidants such as N-acetyl L-cysteine (NAC)
(Cheung et al. 2013). To examine the effects of ROS regu-
lation in more detail, we established 3D organoid cultures
from Rosa-creER ™2 Apc™™/*TIGAR™" mice. This system
allowed us to acutely delete TIGAR in the organoids by
treating the cultures with 4-hydroxytamoxifen (Fig. 4A).
Acute deletion of TIGAR in vitro led to an inhibition of
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min/+

growth of these Apc organoids that could be rescued
following treatment with the antioxidants NAC, Trolox,
and EUK134 (a catalase mimetic) (Baker et al. 1998) at con-
centrations that did not affect the growth of the control
Apc™/* organoids (Fig. 4B,C; Supplemental Fig. 3A,B).
Using MDA staining to detect lipid damage by oxidation,
we detected increased oxidative damage in the TIGAR-
deleted organoids compared with TIGAR-expressing con-
trols. This increased ROS damage was prevented by
treatment with NAC or Trolox (Fig. 4D; Supplemental
Fig. 3C).

While our data support a role for TIGAR in limiting ox-
idative damage and thus supporting cell proliferation and
survival, it is clear that some ROS signaling is important
for cell proliferation. Indeed, using the Apc™™* organo-
ids, we were able to demonstrate this effect of ROS limita-
tion. While our previous studies were carried out with
concentrations of NAC, Trolox, and EUK134 that did
not inhibit the growth of these cells, we found that treat-
ing the cultures with even higher concentrations of these
antioxidants, which inhibit ROS levels in a dose-depen-
dent manner (Supplemental Fig. 4), led to a clear inhibi-
tion of organoid growth (Fig. 4E-H). These data therefore
indicate that ROS levels must be kept within tight bound-
aries and that too little ROS may be as inhibitory to cell
growth as too much ROS.

Qualitative differences between signaling
and damaging ROS

Previous work has suggested that signaling and damaging
ROS may be generated through different mechanisms as
well as in different cell compartments (Trachootham
et al. 2009). ROS generated in mitochondria as a con-
sequence of oxidative phosphorylation or nitric oxide
generated by nitric oxide synthase can contribute to pro-
liferation but are generally considered to be damaging to
the cell and, if produced at excessive levels, lead to cell
death (Porasuphatana et al. 2003; Abramov et al. 2007).
On the other hand, the membrane-associated NOXs are
induced by growth factors and produce ROS that is re-
quired for cell proliferation signaling (Bedard and Krause
2007). Clearly, ROS can be supportive or detrimental to
cell growth and survival, although whether this reflects
only differences in ROS levels or whether different forms
of ROS can have different functions based on source or lo-
cation within the cell is not clear. We therefore sought to
test whether the ROS signal induced by NOX is qualita-
tively different from the ROS induced by loss of TIGAR.

To explore the effects of ROS from different sources on
organoid proliferation, we treated Apc™™/* organoid cul-
tures with different antioxidants, each of which reduces
ROS levels in the organoid cultures in a dose-dependent
manner, as indicated by the reduction of DHE (dihydroe-
thidium) staining (Supplemental Fig. 4). As shown above,
NAC, Trolox, and EUK134 are general antioxidants that
lower both proliferative and damaging ROS. Using Mito
tempo to inhibit mitochondrial ROS (Murphy and Smith
2007), L-NAME to inhibit nitric oxide synthase (Atlante
et al. 1997), and allopurinol to inhibit xanthine oxidase
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that generate deleterious ROS (Cheng and Sun 1994), we
found that the growth of the organoids was enhanced
and could not be inhibited even at high concentrations
of the antioxidants, suggesting that the ROS targeted by
these compounds was only growth inhibitory and not re-
quired for the growth of these cells (Fig. 5A-D). In con-
trast, diphenyleneiodonium (DPI) and ML171, two
inhibitors of NOX1 (Morre 2002; Gianni et al. 2010a,b), re-
sulted in a dose-dependent reduction in organoid growth
with no evidence of enhanced proliferation, indicating
that NOX1-derived ROS only promotes, but does not in-
hibit, cell growth in this system (Fig. 5A,E,F).

To determine the interplay of ROS increases in response
to loss of TIGAR expression and ROS limitation by selec-
tive antioxidants, we tested the effects of Mito tempo,
L-NAME, allopurinol, DPI, and ML171 on the growth
of Rosa-creER™Apc™™*TIGAR™" organoids with and
without acute deletion of TIGAR (Fig. 6A,B; Supplemen-
tal Fig. 3). In each case, inhibition of deleterious ROS (us-
ing Mito tempo, L-NAME, or allopurinol) rescued the
growth of TIGAR-deleted organoids. On the other hand,
inhibition of NOX1-derived ROS using DPI and ML171
inhibited the growth of the control organoids and led
to a further reduction in the growth of TIGAR-null
Apc™™/* organoids (Fig. 6A,B; Supplemental Fig. 3A,B.
Inhibition of deleterious ROS by Mito tempo, L-NAME,

0
0051152 4
NAC (mM)

1 mM Trolox for 2 d. (E) Apc™™/* organoid cultures
2 d after various concentrations of Trolox, NAC, or
EUK134. (F) Measurements of relative organoid size
after increasing concentrations of Trolox. (*) P <0.05
compared with untreated. (G) Measurements of rela-
tive organoid size after increasing concentrations of
NAC. (*) P<0.05 compared with untreated. (H) Mea-
surements of relative organoid size after increasing
concentrations of EUK134. (*) P<0.05 compared
with untreated. Bars, 100 pm.

and allopurinol decreased ROS damage in TIGAR knock-
out organoids compared with control, as indicated by
MDA staining (Fig. 6C). In contrast, inhibition of NOX-de-
rived ROS by DPI and ML171 did not decrease ROS dam-
age in the TIGAR knockout organoids compared with
control (Fig. 6C; Supplemental Fig. 3C) despite a reduction
in total ROS level, as indicated by DCFDA (2/,7'~dichlor-
ofluorescin diacetate) staining in both control and knock-
out organoids (Fig. 6D; Supplemental Fig. 3D). These data
therefore suggest a qualitative difference between damag-
ing ROS produced following loss of TIGAR and signaling
ROS generated through NOX.

To test whether it is possible to distinguish the two
categories of ROS that affect crypt proliferation in vivo,
we examined the consequences of deletion of Racl and
TIGAR. The RAC1 GTPase has been shown to play an im-
portant role in controlling cell proliferation and is activat-
ed in several human cancers (Sanz-Moreno et al. 2008;
Krauthammer et al. 2012; Yang et al. 2012). The deletion
of Apc in the mouse intestine leads to the induction of
RACI, with deletion of Racl inhibiting the crypt hyper-
proliferation seen in this model. Importantly, RAC1 is a
mediator of ROS generation by NOX, and a key contribu-
tion of RAC1 to support proliferation in the intestine is
through the production of ROS by NOX (Myant et al.
2013).
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To investigate the relative importance of endogenous
ROS regulated by different mechanisms, we examined
the effects of intestine-specific deletion of TIGAR and/
or Racl (Fig. 7). As shown previously, Apc deletion result-
ed in the hyperproliferation of intestinal crypts, which
is accompanied by an increased expression of TIGAR.
Deletion of either TIGAR or Rac1 attenuated this prolifer-
ation to similar extents (Fig. 7A,B; Supplemental Fig. 5).
Importantly, Racl deletion (which leads to a decrease in
ROS) did not prevent induction of TIGAR expression,
and the deletion of TIGAR does not affect RACI1 expres-
sion (Fig. 7A), demonstrating that the ROS produced by
NOX through RAC1 is not necessary to induce TIGAR ex-
pression. Simultaneous deletion of both TIGAR (which
increases ROS) and RAC1 (which decreases ROS) resulted
in an even more severe inhibition of crypt proliferation in
response to APC loss, supporting the suggestion that these
pools of ROS have separate functions in these cells (Fig.
7A,B; Supplemental Fig. 5). This is further supported by
the observation that MDA staining (which indicates
ROS damage) is only increased in TIGAR-deleted but
not Racl-deleted intestines, and this increase in ROS
damage is not decreased by the loss of RAC1 in the TIGAR
and RACI1 double mutants (Fig. 7A). Taken together, our
results suggest that, during rapid proliferation induced
by the loss of APC, there is a selective modulation of
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Figure 5. Qualitative differences between signaling
and damaging ROS in Apc™™/* organoids. |A) Unin-
duced Apc™™/* organoid cultures 2 d after addition
of the indicated concentrations of Mito tempo,
L-NAME, allopurinol, DPI, and ML171. (B) Measure-
ments of relative organoid size after increasing con-
centrations of Mito tempo. (*) P<0.05 compared
with untreated. (C) Measurements of relative orga-
noid size after increasing concentrations of
L-NAME. (*) P<0.05 compared with untreated. (D)
Measurements of relative organoid size after increas-
ing concentrations of allopurinol. (*) P<0.05 com-
pared with untreated. (E) Measurements of relative
organoid size after increasing concentrations of DPIL.
(*) P<0.05 compared with untreated. (F) Measure-
ments of relative organoid size after increasing con-
centrations of ML171. (*) P<0.05 compared with
untreated. Bars, 100 pm.

2

two pools of ROS that have different and opposing proper-
ties on cell growth, with RAC1 promoting signaling ROS,
and TIGAR limiting damaging ROS.

Discussion

It is clear that ROS can both function in support of prolif-
eration and cell survival and induce damage and cell death
(D’Autreaux and Toledano 2007; Trachootham et al. 2009;
Gorrini et al. 2013; Sullivan and Chandel 2014a). Our
work indicates that ROS can be differentiated into those
supporting and those inhibiting proliferation and that
these different pools of ROS can be separately controlled
to maximize cell growth in vitro and in vivo. We used
ROS inhibitors and genetic mechanisms to modulate lev-
els of endogenous ROS produced by Apc deletion in the
small intestinal cells in 3D cultures and in vivo. These
models allowed us to determine whether the growth re-
sponse reflects only the levels of ROS (with low ROS
signaling proliferation and high ROS driving cell death)
or whether there is a qualitative difference between sig-
naling and damaging ROS. APC loss leads to the activa-
tion of both RACI1, which promotes the generation of
signaling ROS via NOX1 (Myant et al. 2013), and TIGAR,
which limits ROS through the maintenance of reduced
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glutathione for antioxidant defense (Cheung et al. 2013).
If the role of TIGAR is to limit the levels of RAC1-induced
ROS to maintain proliferation but prevent death, deletion
of either Racl or TIGAR would lower proliferation, but
deletion of TIGAR in a RacIl-null tissue would have
no further effect, since there would be no excessive ROS
for TIGAR to balance. However, this was not the outcome
that we observed. Rather, our data are consistent with
a model in which Wnt signaling leads to the activation
of both RACI and TIGAR, each of which regulates in-
dependent ROS pools that have different functions
(Fig. 7C). RAC1 induces expression of signaling ROS
to drive proliferation, while TIGAR provides antioxidant
defense to prevent the accumulation of damaging ROS.
As predicted by this model, we observed that loss
of either Racl or TIGAR resulted in less proliferation in
Apc-null crypts, and a codeletion of both Rac1 and TIGAR
even further reduced proliferation compared with single
deletions. The cooperation of TIGAR deletion and the
NOX-specific inhibitors DPI and ML171 in retarding the
growth of Apc™™/* organoid cultures further supports
this model.

Malignant development is associated with increased
ROS, which can be induced by oncogene activation and
the loss of the normal cell environment. While ROS can
help support cancer cell proliferation, several studies
have shown that the ability of cancer cells to limit exces-
sive ROS is important for their survival and rapid growth
(Diehn et al. 2009; DeNicola et al. 2011; Harris et al. 2015).

DAPI MDA

Opposing effects of ROS in proliferation

KO Figure 6. Only ROS inhibitors that decrease damag-
ing ROS can rescue the defects of TIGAR-deficient
organoids. (A) Rosa-creER " Apc™"/* TIGAR™ orga-
noid cultures were induced (knockout [KO]) or not in-
duced (control [CTR]) by 4-hydroxytamoxifen for 2 d
and then treated with the indicated drugs (2 nM
DPI, 20 uM Mito tempo, 100 pM L-NAME, and
100 uM allopurinol) for another 2 d. (B) Measure-
ments of the relative size of organoids from A. (*)
P<0.05 compared with untreated CTR organoids;
(**) P<0.05 compared with untreated (CTR) knock-
out organoids (KO) or CTR organoids with DPI; (***)
P <0.05 compared with untreated knockout organo-
ids. (C) MDA staining of organoids from A. (D)
DCFDA live imaging of CTR and knockout organoids
treated with DPI or without DPI (CTR). Bars, 100 um.

DCFDA

The variable responses to ROS have made predicting
the response to ROS limitation in cancer growth difficult.
Inhibition of ROS can prevent proliferation or limit the ac-
cumulation of damage and thus suppress tumor develop-
ment. On the other hand, inhibition of the antioxidant
defense mechanisms that protect tumors would increase
ROS and promote cancer cell death (D’Autreaux and Tol-
edano 2007; Trachootham et al. 2009; Gorrini et al. 2013;
Sullivan and Chandel 2014a). Our results suggest that the
ROS involved in driving these different responses can be
differentially targeted, potentially allowing the develop-
ment of therapeutics that inhibit proliferating ROS while
promoting death-inducing ROS. Understanding the de-
tails of how each pool of ROS is generated and regulated
in cancer cells may be key for developing an effective
strategy for therapy.

Materials and methods

Animals

Apc™/+ (Moser et al. 1990), Ahcre® (Ireland et al. 2004), Apc™"
(Sansom et al. 2004), Rac1™" (Walmsley et al. 2003), Myc™"
(Baena et al. 2005), and TIGAR™" (Cheung et al. 2013) mice
wereused as previously described. Ahcre was induced by B-naptho-
flavone (three 80 mg/kg i.p. injections). Cisplatin-induced
(CDDP; 10 mg/kg i.p. injection) and y-IR-induced intestinal
damage was performed as previously described (Cheung et al.
2013) 3 d after cre induction. Ahcre*Apc™®/*TIGAR** and
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Figure 7. In vivo deletion of both TIGAR and RAC1
can synergistically decrease hyperproliferation of
Apc-deficient intestinal crypts. (A) H&E staining
(top row), TIGAR staining (second row), RACI stain-
ing (third row), Ki67 staining (fourth row), and
MDA staining (bottom row) of small intestines
from wild-type (WT), Ahcre*Apc™? (CTR),
Ahcre* Apd""TIGAR™" (TIGAR knockout [KO]),
Ahcre*ApcRac1™" (RAC1  knockout), and
Ahcre* Apc""TIGAR"Rac1™" (TIGAR/RAC1
knockout) animals 3 d after p-napthoflavone induc-
tion of Ahcre. Bars, 100 um. (B) Measurements of
crypt thickness from A as a percentage of total thick-
ness of epithelium. (*) P <0.05 compared with CTR;
(**) P<0.05 compared with TIGAR knockout or
RACI1 knockout. CTR, n=18; TIGAR, n=12, RACI1
knockout, n=7; TIGAR knockout RAC1 knockout,
n=5. (C) Proposed model of the role of ROS after
Wnt signaling activation.
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Ahcre* Apc™™*TIGAR™" animals were induced at 30 d old, and
animals were sacrificed at 80 d old. All animal work was carried
out in line with the Animals (Scientific Procedures) Act 1986
and the EU Directive 2010 and was sanctioned by the local ethical
review process (University of Glasgow).

Small intestinal crypt culture

Small intestinal crypt cultures from normal intestinal tissues and
adenoma were prepared as previously described (Barker et al.
2009; Sato et al. 2009, 2011). Crypts were embedded in Matrigel
(BD) and cultured in Advanced DMEM/F-12 (ADF, Life Technol-
ogies) supplemented with 1% glutamine, 1% penicillin/strepto-
mycin, 0.1% AlbuMAX I (Life Technologies), 10 mM HEPES
(Life Technologies), 0.05 pg/mL EGF (Peprotech), 0.1 pg/mL Nog-
gin (Peprotech), and 0.5 pg/mL mR-spondin (R&D Systems). For
RosacreER 2 Apc™"/*TIGAR™ crypts, adenomas were suspend-
ed in Matrigel with ADF supplemented with 1% glutamine, 1%
penicillin/streptomycin, 0.1% AlbuMAX I, 10 mM HEPES, 0.05
pg/mL EGF, and 0.1 pg/mL Noggin. The cultures were passaged
every 7-10 d. 4-hydroxytamoxifen (500 nM; Sigma) was used to
induce cre after 2 d in culture. Trolox (Sigma), NAC (Sigma),
Mito tempo (Cayman), L-NAME (Sigma), DPI (Sigma), allopuri-
nol (Sigma), ML171 (Tocris), and EUK134 (Cayman) were used
at the indicated concentrations for 2 d after cre induction.
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Western blot

Protein lysates were prepared in RIPA buffer with complete pro-
tease inhibitors (Roche), resolved via PAGE, and transferred to ni-
trocellulose membranes. The following primary antibodies were
used: Actin [-19-R (Santa Cruz Biotechnology), p-catenin 6B3
(Cell Signaling Technology), cyclin D1 (Cell Signaling Technolo-
gy), HSP90 (Cell Signaling Technology), p21 C-19 (Santa Cruz
Biotechnology), p53 1C12 (Cell Signaling Technology), and
TIGAR M-209 (Santa Cruz Biotechnology). Secondary antibodies
were IRDye800CW-conjugated (LiCor Biosciences), and detec-
tion was performed using an Odyssey infrared scanner (LiCor
Biosciences).

Gene expression analyses

RNA was extracted from organoids or mouse tissue using the
RNeasy kit (Qiagen) following the manufacturer’s instructions.
cDNA was synthesized from 1 pg of RNA using the High-Capac-
ity RNA-to-cDNA kit (Applied Biosystems) according to the
manufacturer’s instructions using a PTC-200 Peltier Thermal
Cycler (MJ Research). The quantitative real-time PCR (qQRT-PCR)
reaction was performed with 2 uL of cDNA with the Fast SYBR
Green Master mix (Applied Biosystems) using a 7500 Fast real-
time PCR system (Applied Biosystems).
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Gene expression was quantified relative to the housekeeping
gene Gapdh (Primer Design) according to the comparative AAC,
method. Mouse TIGAR primers were purchased from Qiagen.

The mRNA primer sequences (5'-3’) used were as follows:
Axin2 for (GCTCCAGAAGATCACAAAGAGC), Axin2 rev
(AGCTTTGAGCCTTCAGCATC), c-Myc for (TGAAGAAGAG
CAAGAAGATGAG), c¢-Myc rev [CTGGATAGTCCTTCCTT
GTG), Cyclin D1 for (GAGAAGTTGTGCATCTACACTG),
Cyclin DI rev (AAATGAACTTCACATCTGTGGC), HO-1 for
(CAGGAGCTGCTGACCCATGA), HO-1 rev (AGCAACTGTC
GCCACCAGAA), p21 for (GGCCCGGAACATCTCAGG), and
p21 rev (AAATCTGTCAGGCTGGTCTGC).

Immunohistochemistry

Immunohistochemistry and H&E staining were performed as pre-
viously described (Sansom et al. 2004; Myant et al. 2013). The
primary antibodies used were p-catenin 6B3 (Cell Signaling Tech-
nology), cyclin D1 (DAKO), Ki67 (Thermo Scientific) MDA
(Abcam), and TIGAR (Millipore).

RNAscope assay protocol

RNAscope assays for detecting mRNA expression in tissue sec-
tions were done on formalin-fixed paraffin-embedded slides and
performed by the Cancer Research UK Beatson Institute Histolo-
gy Services according to the protocol from Advanced Cell Diag-
nostics. All reagents and probes to detect murine TIGAR (Mm-
Tigar targeting 619-1574 of NM_177003.5) and Axin2 (Mm-
Axin2 NM_015732.4) were purchased from Advanced Cell
Diagnostics.

Immunofluorescence

Organoids were collected in cold PBS in Eppendorf tubes (pre-
coated with 1% BSA/PBS for 20 min), incubated for 15 min on
ice, and washed three times before fixing with 4% PFA in PBS.
Organoids were then permeablized with cold 0.2% Triton X-
100 in PBS and blocked with 3% BSA and 0.1% Tween-20 in
PBS. After blocking, the organoids were incubated overnight
with primary antibody (prepared in 1% BSA in PBS), washed three
times, and then incubated with secondary antibody for 1 h. After
washing, the organoids were transferred onto microscope slides
and mounted with mounting medium (Vector Laboratories) un-
der a coverslip with DAPI to visualize nuclei. Live imaging
with DCFDA and DHE was performed according to the manufac-
turer’s instructions (Life Technologies). The primary antibody
used was MDA (Abcam). The secondary antibody used was
anti-rabbit Alexa fluor 594 (Life Technologies). Samples were ex-
amined using an Olympus FV1000 inverted laser scanning confo-
cal microscope.

Quantification and statistical analysis

The number of Ki67-positive cells was measured in at least 50
crypts per animal per treatment. The rate of growth of the tumor
organoid cultures was measured by the average size (diameter) of
at least 100 crypts in each treatment. The data represent mean
values + SEM from three independent experiments (1 = 3) unless
otherwise noted. All P-values were obtained using a t-test.
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