615 research outputs found

    Telomere Recognition and Assembly Mechanism of Mammalian Shelterin

    Get PDF
    Shelterin is a six-subunit protein complex that plays crucial roles in telomere length regulation, protection, and maintenance. Although several shelterin subunits have been studied in vitro, the biochemical properties of the fully assembled shelterin complex are not well defined. Here, we characterize shelterin using ensemble biochemical methods, electron microscopy, and single-molecule imaging to determine how shelterin recognizes and assembles onto telomeric repeats. We show that shelterin complexes can exist in solution and primarily locate telomeric DNA through a three-dimensional diffusive search. Shelterin can diffuse along non-telomeric DNA but is impeded by nucleosomes, arguing against extensive one-dimensional diffusion as a viable assembly mechanism. Our work supports a model in which individual shelterin complexes rapidly bind to telomeric repeats as independent functional units, which do not alter the DNA-binding mode of neighboring complexes but, rather, occupy telomeric DNA in a "beads on a string" configuration

    Mycobacterial infections in a large Virginia hospital, 2001-2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In areas where both tuberculosis (TB) and nontuberculous mycobacteria (NTM) are prevalent, descriptive studies of the clinical features of individual mycobacteria are needed to inform clinical triage.</p> <p>Methods</p> <p>We queried the University of Virginia Clinical Data Repository for all mycobacterial infections from 2001-2009.</p> <p>Results</p> <p>Of 494 mycobacterial infections in 467 patients there were 22 species. Patients with pulmonary Tb were more likely to be reported as immigrants (p < 0.001) and less likely to have a predisposing risk factor for NTM (pre-existing lung disease or host predisposition; p = 0.002). Review of chest CT scans revealed that TB infection was more likely to exhibit cavities and pleural effusion than NTM infection (p < 0.05). Among NTM infections <it>M. kansasii</it>, <it>M. xenopi</it>, and <it>M. fortuitum </it>were more likely than MAC to have cavities. There were at least 83 patients that met criteria for NTM lung disease and these were caused by 9 species. <it>M. abscessus </it>infection was associated with cystic fibrosis and <it>M. xenopi </it>infection was associated with male gender.</p> <p>Conclusions</p> <p>In our center mycobacterial infections were common and of diverse species. Immigrant status, cavities, and effusion were associated with TB vs. NTM.</p

    Characterization of the genomic and immunologic diversity of malignant brain tumors through multisector analysis

    Get PDF
    Despite some success in secondary brain metastases, targeted or immune-based therapies have shown limited efficacy against primary brain malignancies such as glioblastoma (GBM). Although the intratumoral heterogeneity of GBM is implicated in treatment resistance, it remains unclear whether this diversity is observed within brain metastases and to what extent cancer cell-intrinsic heterogeneity sculpts the local immune microenvironment. Here, we profiled the immunogenomic state of 93 spatially distinct regions from 30 malignant brain tumors through whole-exome, RNA, and T-cell receptor sequencing. Our analyses identified differences between primary and secondary malignancies, with gliomas displaying more spatial heterogeneity at the genomic and neoantigen levels. In addition, this spatial diversity was recapitulated in the distribution of T-cell clones in which some gliomas harbored highly expanded but spatially restricted clonotypes. This study defines the immunogenomic landscape across a cohort of malignant brain tumors and contains implications for the design of targeted and immune-based therapies against intracranial malignancies. SIGNIFICANCE: This study describes the impact of spatial heterogeneity on genomic and immunologic characteristics of gliomas and brain metastases. The results suggest that gliomas harbor significantly greater intratumoral heterogeneity of genomic alterations, neoantigens, and T-cell clones than brain metastases, indicating the importance of multisector analysis for clinical or translational studies

    Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation

    Get PDF
    Mutations or duplications in MECP2 cause Rett and Rett-like syndromes, neurodevelopmental disorders characterized by mental retardation, motor dysfunction, and autistic behaviors. MeCP2 is expressed in many mammalian tissues and functions as a global repressor of transcription; however, the molecular mechanisms by which MeCP2 dysfunction leads to the neural-specific phenotypes of RTT remain poorly understood. Here, we show that neuronal activity and subsequent calcium influx trigger the de novo phosphorylation of MeCP2 at serine 421 (S421) by a CaMKII-dependent mechanism. MeCP2 S421 phosphorylation is induced selectively in the brain in response to physiological stimuli. Significantly, we find that S421 phosphorylation controls the ability of MeCP2 to regulate dendritic patterning, spine morphogenesis, and the activity-dependent induction of Bdnf transcription. These findings suggest that, by triggering MeCP2 phosphorylation, neuronal activity regulates a program of gene expression that mediates nervous system maturation and that disruption of this process in individuals with mutations in MeCP2 may underlie the neural-specific pathology of RTT

    PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data

    Get PDF
    Motivation: RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon–exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge

    Distinct clonal identities of B-ALLs arising after lenolidomide therapy for multiple myeloma

    Get PDF
    Patients with multiple myeloma (MM) who are treated with lenalidomide rarely develop a secondary B-cell acute lymphoblastic leukemia (B-ALL). The clonal and biological relationship between these sequential malignancies is not yet clear. We identified 17 patients with MM treated with lenalidomide, who subsequently developed B-ALL. Patient samples were evaluated through sequencing, cytogenetics/fluorescence in situ hybridization (FISH), immunohistochemical (IHC) staining, and immunoglobulin heavy chain (IgH) clonality assessment. Samples were assessed for shared mutations and recurrently mutated genes. Through whole exome sequencing and cytogenetics/FISH analysis of 7 paired samples (MM vs matched B-ALL), no mutational overlap between samples was observed. Unique dominant IgH clonotypes between the tumors were observed in 5 paired MM/B-ALL samples. Across all 17 B-ALL samples, 14 (83%) had a TP53 variant detected. Three MM samples with sufficient sequencing depth (\u3e500×) revealed rare cells (average of 0.6% variant allele frequency, or 1.2% of cells) with the same TP53 variant identified in the subsequent B-ALL sample. A lack of mutational overlap between MM and B-ALL samples shows that B-ALL developed as a second malignancy arising from a founding population of cells that likely represented unrelated clonal hematopoiesis caused by a TP53 mutation. The recurrent variants in TP53 in the B-ALL samples suggest a common path for malignant transformation that may be similar to that of TP53-mutant, treatment-related acute myeloid leukemia. The presence of rare cells containing TP53 variants in bone marrow at the initiation of lenalidomide treatment suggests that cellular populations containing TP53 variants expand in the presence of lenalidomide to increase the likelihood of B-ALL development

    Clouds in the Coldest Brown Dwarfs: FIRE Spectroscopy of Ross 458C

    Get PDF
    Condensate clouds are a salient feature of L dwarf atmospheres, but have been assumed to play little role in shaping the spectra of the coldest T-type brown dwarfs. Here we report evidence of condensate opacity in the near-infrared spectrum of the brown dwarf candidate Ross 458C, obtained with the Folded-Port Infrared Echellette (FIRE) spectrograph at the Magellan Telescopes. These data verify the low-temperature nature of this source, indicating a T8 spectral classification, log Lbol/Lsun = -5.62+/-0.03, Teff = 650+/-25 K, and a mass at or below the deuterium burning limit. The data also reveal enhanced emission at K-band associated with youth (low surface gravity) and supersolar metallicity, reflecting the properties of the Ross 458 system (age = 150-800 Myr, [Fe/H] = +0.2 to +0.3). We present fits of FIRE data for Ross 458C, the T9 dwarf ULAS J133553.45+113005.2, and the blue T7.5 dwarf SDSS J141624.08+134826.7B, to cloudless and cloudy spectral models from Saumon & Marley. For Ross 458C we confirm a low surface gravity and supersolar metallicity, while the temperature differs depending on the presence (635 [+25,-35] K) or absence (760 [+70,-45] K) of cloud extinction. ULAS J1335+1130 and SDSS J1416+1348B have similar temperatures (595 [+25,-45] K), but distinct surface gravities (log g = 4.0-4.5 cgs versus 5.0-5.5 cgs) and metallicities ([M/H] ~ +0.2 versus -0.2). In all three cases, cloudy models provide better fits to the spectral data, significantly so for Ross 458C. These results indicate that clouds are an important opacity source in the spectra of young cold T dwarfs, and should be considered when characterizing the spectra of planetary-mass objects in young clusters and directly-imaged exoplanets. The characteristics of Ross 458C suggest it could itself be regarded as a planet, albeit one whose cosmogony does not conform with current planet formation theories.Comment: Accepted for publication to ApJ: 18 pages, 11 figures in emulateapj forma

    Ultra-deep sequencing reveals the mutational landscape of classical Hodgkin lymphoma

    Get PDF
    UNLABELLED: The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified \u3e95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient

    Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

    Full text link
    The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements
    corecore